rozwiaz rownanie: dla x∈<0,2π>
2 cos ^2 ( 3x - pi/4 ) = 1
2 cos^2 ( 3x - pi/4 ) - 1 = 0
Korzystam z wzoru
cos 2 alfa = 2 cos^2 alfa - 1
zatem
cos [ 2*( 3x - pi/ 4)] = 0
cos ( 6x - pi/2 ) = 0
6x - pi/2 = pi/2 + 2 pi*k lub 6x - pi/2 = (3/2) pi + 2 pi * k
6x = pi + 2 pi*k lub 6x = 2 pi + 2 pi *k
x = pi/6 + (pi/3)*k lub x = pi/3 + ( pi/3)*k
k = 0,1,2,3,4,5 ....................... ... k = -1, 0,1,2,3,4,5
==============.......................... ===================
======================================================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
2 cos ^2 ( 3x - pi/4 ) = 1
2 cos^2 ( 3x - pi/4 ) - 1 = 0
Korzystam z wzoru
cos 2 alfa = 2 cos^2 alfa - 1
zatem
cos [ 2*( 3x - pi/ 4)] = 0
cos ( 6x - pi/2 ) = 0
6x - pi/2 = pi/2 + 2 pi*k lub 6x - pi/2 = (3/2) pi + 2 pi * k
6x = pi + 2 pi*k lub 6x = 2 pi + 2 pi *k
x = pi/6 + (pi/3)*k lub x = pi/3 + ( pi/3)*k
k = 0,1,2,3,4,5 ....................... ... k = -1, 0,1,2,3,4,5
==============.......................... ===================
======================================================