rozwiaz rownania
a) + 4 x ^2 + 5 = ( x + 1 )^3
b) x(x + 1)^2 -( x + 2)^3 = - 10x - 3x^2 - 8
a] (x-1)^3 +4x^2 + 5 = (x+1)^3
x^3-3x^2+3x-1+4x^2+5= x^3 +3x^2 + 3x + 1
x^3-x^3 -3x^2 +4x^2-3x^2+3x-3x-1+5-1=0
-2x^2+3=0
-2x^2=-3
x^2=3/2
x=-v3/2 U x=v3/2
b]
x(x+1)^2 - (x+2)^3 = -10 -3x^2 -8
x(x^2+2x+1)-(x^3+6x^2 + 12x + 8 )=-10-3x^2-8
x^3+2x^2+x-x^3-6x^2-12x-8=-10x-3x^2-8
-x^2+x=-8+8
-x^2-x=0
-x(x+1)=0
-x=0 x+1=0
x=0 U x=-1
a) (x-1)³ + 4 x² + 5 = ( x + 1 )³
x³-3x²+3x-1 +4x²+5=x³+3x²+3x+1
x²+3x+4=3x²+3x+1
-2x²=-3
2x²=3
b) x(x + 1)² -( x + 2)³ = - 10x - 3x² - 8
x(x²+2x+1) - (x³+6x²+12x+8)= -10x - 3x²-8
x³ + 2x² + x - x³ - 6x² - 12x - 8 = -3x² - 10x - 8
-4x² - 11x = -3x² - 10 x
-x² -x =0
x(-x-1)=0
x=0 ∨ x=-1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a] (x-1)^3 +4x^2 + 5 = (x+1)^3
x^3-3x^2+3x-1+4x^2+5= x^3 +3x^2 + 3x + 1
x^3-x^3 -3x^2 +4x^2-3x^2+3x-3x-1+5-1=0
-2x^2+3=0
-2x^2=-3
x^2=3/2
x=-v3/2 U x=v3/2
b]
x(x+1)^2 - (x+2)^3 = -10 -3x^2 -8
x(x^2+2x+1)-(x^3+6x^2 + 12x + 8 )=-10-3x^2-8
x^3+2x^2+x-x^3-6x^2-12x-8=-10x-3x^2-8
-x^2+x=-8+8
-x^2-x=0
-x(x+1)=0
-x=0 x+1=0
x=0 U x=-1
a) (x-1)³ + 4 x² + 5 = ( x + 1 )³
x³-3x²+3x-1 +4x²+5=x³+3x²+3x+1
x²+3x+4=3x²+3x+1
-2x²=-3
2x²=3
b) x(x + 1)² -( x + 2)³ = - 10x - 3x² - 8
x(x²+2x+1) - (x³+6x²+12x+8)= -10x - 3x²-8
x³ + 2x² + x - x³ - 6x² - 12x - 8 = -3x² - 10x - 8
-4x² - 11x = -3x² - 10 x
-x² -x =0
x(-x-1)=0
x=0 ∨ x=-1