Rozwiąż trojkąt prostokątny - znajdź pozostałe boki i kąty
a)
a=?
b=6cm
c=?
b)
a= 6cm
b= ?
beta = 60 st, więc alfa = 90 st - beta = 30 st
gamma = 90 st
b = 6 cm
Mamy
b/ c = sin 60 st
b = c* sin 60 st
c = b / sin 60 st = 6 / [ p(3) / 2 ] = 12 / p(3) = 4 p(3)
oraz
a / c = cos 60 st
a = c*cos 60 st = 4 p(3) * (1/2) = 2 p(3)
Odp. alfa = 30 st, gamma = 90 st
a = 2 p(3) cm, c = 4 p(3) cm
========================
a = 6 cm
c = 6 p(2) cm
cos beta = a / c = 6 / 6 p(2) = 1 / p(2) = p(2) / 2
więc
beta = 45 st
----------------
zatem
alfa = 90 st - beta = 45 st
----------------------------------
a^2 + b^2 = C^2 => b^2 = c^2 - a^2 = [ 6 p(2) ]^2 - 6^2 = 36*2 - 36 = 36
b = 6
-------
Odp. b = 6 cm ; alfa = beta = 45 st, gamma = 90 st
===========================================
p(2) - pierwiastek kwadratowy z 2
p(3) - pierwiastek kwadratowy z 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)
beta = 60 st, więc alfa = 90 st - beta = 30 st
gamma = 90 st
b = 6 cm
Mamy
b/ c = sin 60 st
b = c* sin 60 st
c = b / sin 60 st = 6 / [ p(3) / 2 ] = 12 / p(3) = 4 p(3)
oraz
a / c = cos 60 st
a = c*cos 60 st = 4 p(3) * (1/2) = 2 p(3)
Odp. alfa = 30 st, gamma = 90 st
a = 2 p(3) cm, c = 4 p(3) cm
========================
b)
a = 6 cm
c = 6 p(2) cm
Mamy
cos beta = a / c = 6 / 6 p(2) = 1 / p(2) = p(2) / 2
więc
beta = 45 st
----------------
zatem
alfa = 90 st - beta = 45 st
----------------------------------
a^2 + b^2 = C^2 => b^2 = c^2 - a^2 = [ 6 p(2) ]^2 - 6^2 = 36*2 - 36 = 36
więc
b = 6
-------
Odp. b = 6 cm ; alfa = beta = 45 st, gamma = 90 st
===========================================
p(2) - pierwiastek kwadratowy z 2
p(3) - pierwiastek kwadratowy z 3