Rozwiąż równanie:
a)
b)
c)
d)
x^5 + 5 x^4 + x^3 + 5 x^2 = 0
x^3 *( x^2 + 5x) + x*( x^2 + 5x) = 0
(x^3 + x)*( x^2 + 5x) = 0
x*( x^2 + 1)*x*( x + 5) = 0
x = 0 lub x + 5 = 0 , bo x^2 + 1 > 0 dla dowolnej liczby rzeczywistej x
x = 0 lub x = - 5
==================
3 x^4 - 5 x^3 - 6 x^2 + 10 x = 0
3x^2 *(x^2 - 2) - 5 x*(x^2 - 2) = 0
( 3 x^2 - 5x) *(x^2 - 2) = 0
x*(3x - 5)*( x - p(2))*( x + p(2)) = 0
x = 0 lub x = 5/3 lub x = p(2) lub x = - p(2)
=============================================
p(2) - pierwiastek kwadratowy z 2
x^4 - 4 x^3 - x + 4 = 0
x^3*( x - 4) - 1*(x - 4) = 0
(x^3 - 1)*( x - 4) = 0
( x -1)*( x^2 + x + 1)*(x - 4) = 0
x -1 = 0 lub x - 4 = 0 , bo x^2 + x + 1 > 0 - delta < 0
x = 1 lub x = 4
===================
x^5 - 4 x^3 - 8 x^2 + 32 = 0
x^3 *(x^2 - 4) - 8 *( x^2 - 4) = 0
( x^3 - 8)*( x^2 - 4) = 0
( x^3 - 2^3)*( x -2)*(x + 2) = 0
( x - 2)*(x^2 + 2x + 4)*(x - 2)*( x + 2) = 0
x - 2 = 0 lub x + 2 = 0 , bo x^2 + 2x + 4 > 0 - delta < 0
x = 2 ( podwójny ) lub x = - 2
=================================
W c, d - korzystamy z wzoru na różnicę sześcianów:
a^3 - b^3 = (a - b)*( a^2 +a*b + b^2)
============================================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
x^5 + 5 x^4 + x^3 + 5 x^2 = 0
x^3 *( x^2 + 5x) + x*( x^2 + 5x) = 0
(x^3 + x)*( x^2 + 5x) = 0
x*( x^2 + 1)*x*( x + 5) = 0
x = 0 lub x + 5 = 0 , bo x^2 + 1 > 0 dla dowolnej liczby rzeczywistej x
x = 0 lub x = - 5
==================
b)
3 x^4 - 5 x^3 - 6 x^2 + 10 x = 0
3x^2 *(x^2 - 2) - 5 x*(x^2 - 2) = 0
( 3 x^2 - 5x) *(x^2 - 2) = 0
x*(3x - 5)*( x - p(2))*( x + p(2)) = 0
x = 0 lub x = 5/3 lub x = p(2) lub x = - p(2)
=============================================
p(2) - pierwiastek kwadratowy z 2
c)
x^4 - 4 x^3 - x + 4 = 0
x^3*( x - 4) - 1*(x - 4) = 0
(x^3 - 1)*( x - 4) = 0
( x -1)*( x^2 + x + 1)*(x - 4) = 0
x -1 = 0 lub x - 4 = 0 , bo x^2 + x + 1 > 0 - delta < 0
x = 1 lub x = 4
===================
d)
x^5 - 4 x^3 - 8 x^2 + 32 = 0
x^3 *(x^2 - 4) - 8 *( x^2 - 4) = 0
( x^3 - 8)*( x^2 - 4) = 0
( x^3 - 2^3)*( x -2)*(x + 2) = 0
( x - 2)*(x^2 + 2x + 4)*(x - 2)*( x + 2) = 0
x - 2 = 0 lub x + 2 = 0 , bo x^2 + 2x + 4 > 0 - delta < 0
x = 2 ( podwójny ) lub x = - 2
=================================
W c, d - korzystamy z wzoru na różnicę sześcianów:
a^3 - b^3 = (a - b)*( a^2 +a*b + b^2)
============================================