Rozłóż wielomian w na czynniki liniowe (jak w przykładzie):
a)
b)
c)
a) W(x)=x⁴ - 18x² + 81 = (x²-9)² = [(x-3)(x+3)]² = (x-3)²(x+3)²
b) W(x)=32x⁴ - 16x² +2 = 32x⁴ - 8x² -8x² +2 = 8x²(4x²-1)-2(4x²-1) = (8x²-2)(4x²-1) = (√8x-√2)(√8x+√2)(2x-1)(2x+1)
c)W(x)=x⁵ - 6x³ + 9x = x(x⁴-6x²+9)=x(x²-3)²=x(x-√3)²(x+√3)²
a) = (x² - 9)² = [(x - 3)(x + 3)]² = (x - 3)²(x + 2)²
b) = =
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a) W(x)=x⁴ - 18x² + 81 = (x²-9)² = [(x-3)(x+3)]² = (x-3)²(x+3)²
b) W(x)=32x⁴ - 16x² +2 = 32x⁴ - 8x² -8x² +2 = 8x²(4x²-1)-2(4x²-1) = (8x²-2)(4x²-1) = (√8x-√2)(√8x+√2)(2x-1)(2x+1)
c)W(x)=x⁵ - 6x³ + 9x = x(x⁴-6x²+9)=x(x²-3)²=x(x-√3)²(x+√3)²
a) = (x² - 9)² = [(x - 3)(x + 3)]² = (x - 3)²(x + 2)²
b) =
= ![2[(2x - 1)(2x + 1)]^{2} = 2(2x - 1)^{2}(2x + 1)^{2} 2[(2x - 1)(2x + 1)]^{2} = 2(2x - 1)^{2}(2x + 1)^{2}](https://tex.z-dn.net/?f=2%5B%282x+-+1%29%282x+%2B+1%29%5D%5E%7B2%7D+%3D+2%282x+-+1%29%5E%7B2%7D%282x+%2B+1%29%5E%7B2%7D)
c)![= x(x^{4} - 6x^{2} + 9) = x(x^{2} - 3)^{2} = x[(x - \sqrt{3})(x + \sqrt{3})]^{2} = x(x - \sqrt{3})^{2}(x + \sqrt{3})^{2} = x(x^{4} - 6x^{2} + 9) = x(x^{2} - 3)^{2} = x[(x - \sqrt{3})(x + \sqrt{3})]^{2} = x(x - \sqrt{3})^{2}(x + \sqrt{3})^{2}](https://tex.z-dn.net/?f=+%3D+x%28x%5E%7B4%7D+-+6x%5E%7B2%7D+%2B+9%29+%3D+x%28x%5E%7B2%7D+-+3%29%5E%7B2%7D+%3D+x%5B%28x+-+%5Csqrt%7B3%7D%29%28x+%2B+%5Csqrt%7B3%7D%29%5D%5E%7B2%7D+%3D+x%28x+-+%5Csqrt%7B3%7D%29%5E%7B2%7D%28x+%2B+%5Csqrt%7B3%7D%29%5E%7B2%7D)