rozwiąż rownanie log2 (x+1) +log2 (x-7) = 7log2 (x-7) +log2(x+5) = 0
log2 (x+1) +log2 (x-7) = 7
D: x > -1 i x > 7
D = (7, +oo)
log2 [(x + 1)(x - 7) = log2 2^7
x² - 7x + x - 7 = 128
x² - 6x - 135 = 0
Δ = 36 + 540 = 576
√Δ = 24
x1 = (6 - 24) / 2 = -18/2 = -9 ∉ D
x2 = (6 + 24) / 2 = 30/2 = 15 ∈ D
odp. x = 15log2 (x-7) +log2(x+5) = 0
D: x > 7 i x > -5
log2 [(x - 7)(x + 5)] = log2 2^0
x² + 5x - 7x - 35 = 1
x² - 2x - 36 = 0
Δ = 4 + 144 = 148
√Δ = 2√37
x1 = (2 - 2√37) / 2 = 1 - √37 ≈ -5,08 ∉ D
x2 = (2 + 2√37) / 2 = 1 + √37 ≈ 7,08 ∈D
odp. x = 1 + √37
1.log2 (x+1) +log2 (x-7) = 7
Zaczynamy od wyznanczenia naszej dziedziny:
x+1 > 0 x-7 > 0
x > -1 x > 7
dziedzina, nasza częśc wspólna, czyli =( 7; +∞ )
korzystamy ze wzoru:loga(x*y)=logax+logay
log₂(x+1)(x-7)=7
(x+1)(x-7)=2⁷
x²-7x+x-7=128
x²-6x-135=0
Δ = 6²-4*1*(-135)
Δ = 36+540
Δ=576
√Δ=24
X₁ = 6 - 24 / 2 = -18/2 = -9
X₂ = 6 + 24 / 2 = 30/2 = 15
Komentarz do zadania:
x₁ ∉ D zbioru, bo jest (-9)
X₂ ∈ D zbioru
b) log2 (x-7) +log2(x+5) = 0
x-7>0 x+5=0
x>7 x=-5
log2 (x-7) +log2(x+5) = 0
(x-7)(x+5)=2⁰
x²+5x-7x-35=1
x²-2x-36=0
Δ=(-2)²-4*1*(-36)
Δ=4+144
Δ=148= √4*37= 2√37
√Δ=2√37
X₁=-2 -2√37/2 = 2√37
x₂=-2+2√37/2= -2√37
x₁ ∈ D zbioru,
X₂ ∉ D zbioru, bo jest -2√37
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
log2 (x+1) +log2 (x-7) = 7
D: x > -1 i x > 7
D = (7, +oo)
log2 [(x + 1)(x - 7) = log2 2^7
x² - 7x + x - 7 = 128
x² - 6x - 135 = 0
Δ = 36 + 540 = 576
√Δ = 24
x1 = (6 - 24) / 2 = -18/2 = -9 ∉ D
x2 = (6 + 24) / 2 = 30/2 = 15 ∈ D
odp. x = 15
log2 (x-7) +log2(x+5) = 0
D: x > 7 i x > -5
D = (7, +oo)
log2 [(x - 7)(x + 5)] = log2 2^0
x² + 5x - 7x - 35 = 1
x² - 2x - 36 = 0
Δ = 4 + 144 = 148
√Δ = 2√37
x1 = (2 - 2√37) / 2 = 1 - √37 ≈ -5,08 ∉ D
x2 = (2 + 2√37) / 2 = 1 + √37 ≈ 7,08 ∈D
odp. x = 1 + √37
1.log2 (x+1) +log2 (x-7) = 7
Zaczynamy od wyznanczenia naszej dziedziny:
x+1 > 0 x-7 > 0
x > -1 x > 7
dziedzina, nasza częśc wspólna, czyli =( 7; +∞ )
korzystamy ze wzoru:
loga(x*y)=logax+logay
log₂(x+1)(x-7)=7
(x+1)(x-7)=2⁷
x²-7x+x-7=128
x²-6x-135=0
Δ = 6²-4*1*(-135)
Δ = 36+540
Δ=576
√Δ=24
X₁ = 6 - 24 / 2 = -18/2 = -9
X₂ = 6 + 24 / 2 = 30/2 = 15
Komentarz do zadania:
x₁ ∉ D zbioru, bo jest (-9)
X₂ ∈ D zbioru
b) log2 (x-7) +log2(x+5) = 0
x-7>0 x+5=0
x>7 x=-5
dziedzina, nasza częśc wspólna, czyli =( 7; +∞ )
korzystamy ze wzoru:
loga(x*y)=logax+logay
log2 (x-7) +log2(x+5) = 0
(x-7)(x+5)=2⁰
x²+5x-7x-35=1
x²-2x-36=0
Δ=(-2)²-4*1*(-36)
Δ=4+144
Δ=148= √4*37= 2√37
√Δ=2√37
X₁=-2 -2√37/2 = 2√37
x₂=-2+2√37/2= -2√37
Komentarz do zadania:
x₁ ∈ D zbioru,
X₂ ∉ D zbioru, bo jest -2√37