Rozwiąż nierównośc ;)
x^3 - (x+1)^3 < -3(x^2-5)
^ - potęga
x³ - (x+1)³ < -3(x²-5)
x³ -(x³ + 3x² +3x +1) < -3x² + 15
x³ -x³ -3x² -3x-1 +3x² -16 < 0
-3x -16 < 0
-3x < 16 /:(-3)
x > -16/3
x > -5⅓
Odp. x ∈ (-5⅓, ∞)
x³-(x+1)³ < -3(x²-5)
x³ - x³ -3x² - 3x -1 < -3x² +15
-3x <16
x∈(-16/3;∞)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
x³ - (x+1)³ < -3(x²-5)
x³ -(x³ + 3x² +3x +1) < -3x² + 15
x³ -x³ -3x² -3x-1 +3x² -16 < 0
-3x -16 < 0
-3x < 16 /:(-3)
x > -16/3
x > -5⅓
Odp. x ∈ (-5⅓, ∞)
x³-(x+1)³ < -3(x²-5)
x³ - x³ -3x² - 3x -1 < -3x² +15
-3x <16
x > -16/3
x∈(-16/3;∞)