Rozłóż na czynniki wielomiany:
a) W(x) = 5x³ - 5x
b) W(x) = x³+5x²+7x+3
c) W(x) = x³ - x+6
Jakimkolwiek sposobem.
a) 5x(x^2-1)
b)W(-1)=0
teraz dzielisz wielomian przez (x+1)
x^2+4x+3
-----------------------
x^3+5x^2+7x+3:(x+1)
-x^3-x^2
---------------------
4x^2+7x+3
-4x^2-4x
--------------------------
3x+3
-3x-3
---------------------------------
==
(x^2+4x+3)(x+1)=
liczysz deltę i pierwiastki
delta=4 pierw z delty=2
x1=-3
x2=-1
czyli (x+3)(x+1)(x+1)
c) W(-2)=0
x^2- 2x+3
------------------------
x^3-x + 6: (x+2)
-x^3+2x^2
-------------------
- 2x^2-x
2x^2+4x
3x + 6
-3x - 6
(x^3-x+6)(x+2)
delta z (x^3-x+6) będzie mniejsza od zera zatem tak pozostanie:
W(x)=(x^3-x+6)(x+2)
Pozdrawiam ;)
a) W(x) = 5x³ - 5x = 5x(x² - 1) = 5x(x - 1)(x +1)
W(-1) = -1 + 5 - 7 + 3 = 0
x² + 4x + 3
------------------
(x³+5x²+7x+3) : (x + 1)
-x³-x²
--------
4x² + 7x
-4x² - 4x
-------------
3x + 3
-3x - 3
-----------
= =
W(x) = (x +1)(x² + 4x + 3) = 0
x² + 4x + 3 = 0
Δ = 16 - 12 = 4
√Δ = 2
x1 = (-4 - 2)/2 = -6/2 = -3
x2 = (-4 + 2)/2 = -2/2 = -1
odp. W(x) = (x +1)(x + 3)(x +1)
W(-2) = - 8 + 2 + 6 = 0
x² - 2x + 3
(x³ - x + 6) : (x +2)
-x³ -2x²
------------
-2x² - x
2x² + 4x
W(x) = (x + 2)(x² - 2x + 3)
Δ = 4 - 12 = - 8 < 0
odp. W(x) = (x + 2)(x² - 2x + 3)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a) 5x(x^2-1)
b)W(-1)=0
teraz dzielisz wielomian przez (x+1)
x^2+4x+3
-----------------------
x^3+5x^2+7x+3:(x+1)
-x^3-x^2
---------------------
4x^2+7x+3
-4x^2-4x
--------------------------
3x+3
-3x-3
---------------------------------
==
(x^2+4x+3)(x+1)=
liczysz deltę i pierwiastki
delta=4 pierw z delty=2
x1=-3
x2=-1
czyli (x+3)(x+1)(x+1)
c) W(-2)=0
x^2- 2x+3
------------------------
x^3-x + 6: (x+2)
-x^3+2x^2
-------------------
- 2x^2-x
2x^2+4x
-----------------------
3x + 6
-3x - 6
--------------------------
==
(x^3-x+6)(x+2)
delta z (x^3-x+6) będzie mniejsza od zera zatem tak pozostanie:
W(x)=(x^3-x+6)(x+2)
Pozdrawiam ;)
a) W(x) = 5x³ - 5x = 5x(x² - 1) = 5x(x - 1)(x +1)
b) W(x) = x³+5x²+7x+3
W(-1) = -1 + 5 - 7 + 3 = 0
x² + 4x + 3
------------------
(x³+5x²+7x+3) : (x + 1)
-x³-x²
--------
4x² + 7x
-4x² - 4x
-------------
3x + 3
-3x - 3
-----------
= =
W(x) = (x +1)(x² + 4x + 3) = 0
x² + 4x + 3 = 0
Δ = 16 - 12 = 4
√Δ = 2
x1 = (-4 - 2)/2 = -6/2 = -3
x2 = (-4 + 2)/2 = -2/2 = -1
odp. W(x) = (x +1)(x + 3)(x +1)
c) W(x) = x³ - x+6
W(-2) = - 8 + 2 + 6 = 0
x² - 2x + 3
-------------
(x³ - x + 6) : (x +2)
-x³ -2x²
------------
-2x² - x
2x² + 4x
-----------
3x + 6
-3x - 6
-----------
= =
W(x) = (x + 2)(x² - 2x + 3)
Δ = 4 - 12 = - 8 < 0
odp. W(x) = (x + 2)(x² - 2x + 3)