" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
b)(n-1)!
c) 1/n
37b) 1 + (n+1)(n+2)
d)[ (n-2)(n-3)! + (n-3)! ] /[n! + n!(n+1)] = (n-2+1)(n-3)! / (1+n+1)n! =
(n-1)(n-3)! / (n+2)n! = (n-1)(n-3)! / (n+2)(n)(n-1)(n-2)(n-3)! = (n-1)/ n(n+2)(n-1)(n-2) =
1/ n(n-2)(n+2)
e)n(n-1)1 * n(n-1)! / (n+1)n(n-1)! *(n-1)! = n*n * [(n-1)!]^2 / (n+1)n * [(n-1)!]^2 =
n * n / (n+1) * n = n/(n+1)
f) [(2n+3)(2n+2)! - (2n+2)!] / (2n+2)! = [(2n+3) -1] / 1 = 2n+2