Prosiłbym do poniedziałku, naprawde jest mi to potrzebne, dzięki
z.1
a) an = (3n - 2) / 2^n
a1 = (3*1 - 2)/2^1 = 1/2
a2 =(3*2 - 2)/2^2 = 4/4 = 1
a3 = (3*3 - 2)/2^3 = 7/8
a4 = (3*4 - 2 )/2^4 = 10/16 = 5/8
a5 = (3*5 - 2)/2^5 = 13/32
----------------------------------------
b)
an = 4 - n^2
a1 = 4 - 1^2 = 4 - 1 = 3
a2 = 4 - 2^2 = 4 - 4 = 0
a3 = 4 - 3^2 = 4 - 9 = - 5
a4= 4 - 4^2 = 4 - 16 = - 12
a5 = 4 - 5^2 = 4 - 25 = - 21
----------------------------------
c)
an = (-1)^n *(2n + 3)
a1 = (-1)^1 *(2*1+ 3) = - 5
a2 = (-1)^2 *(2*2 + 3) = 7
a3 = (-1)^3 *( 2*3 + 3) = - 9
a4 = (-1)^4 *(2*4 + 3) = 11
a5 = (-1)^5 *(2*5 + 3) = - 13
------------------------------------
z.11
Ciąg geometryczny
a) a3 = 6 oraz a4 = 18
Mamy
q = a4 : a3 = 18/6 = 3
a3 = a1*q^2 ---> a1 = a3 : q^2 = 6 : 3^2 = 6 : 9 = 2/3
Odp. a1 = 2/3 oraz q = 3
========================
a2 = 8 oraz a4 = 32
a2 = a1*q oraz a4 = a1*q^3
zatem
a4 : a2 = a1*q^3 : a1*q = q^2
ale a4 : a2 = 32 : 8 = 4
q^2 = 4
czyli q = - 2 lub q = 2
a1 = a2 : q = 8 : (-2) = - 4
lub
a1 = a2: q = 8 : 2 = 4
Odp.
a1 = - 4 oraz q = -2
a1 = 4 oraz q = 2
=====================
z.12
q = - 2/3
a6 = 32/27
a6 = a1*q^5 --> a1 = a6 : q^5
a1 = (32/27) : ( -2/3)^5 = (32/27) : ( - 32/243) = (32/27)*( - 243/32) =
= - 243/27 = - 9
z.13
a1 = 3 oraz q = - 2
Oblicz
a) S6 = a1* [1 - q^6]/[1 - q]
S6 = 3*[ 1 - (-2)^6]/[1 - (-2)] = 3*[ 1 - 64]/3 = - 63
-----------------------------------------------------------------
S7 = a1*[1 - q^7]/[ 1 - q] = 3*[ 1 - (-2)^7]/[ 1 - (-2)] =
= 3*[ 1 - 128]/3 = 1 - 128 = - 127
================================================
Potęgi i logarytmy
a)
( 2 1/3)^(-3) * ( 6/7)^(-3) = ( 7/3 *6/7)^(-3) = 2^(-3) = 1/2^3 = 1/8
(1/9)^7 * 3 ^15 = (1/9)^7 * 3^7 * 3^8 = (1/9 * 3)^7 * 3^8 =
= (1/3)^7 *3^7 * 3 = 1*3 = 3
(1/9)^7 * 3 ^15 = 3^15 / (3^2)^7 = 3^15/ 3^14 = 3
( 1 2/3)^(-2/3) * ( 16 1/5) ^(-2/3) =[(1/27)^(1/3)] ^2 =
= (1/3)^2 = 1/9
d)
25^7 / 125^5 = [( 5^2)^7]/ [ (5^3)^5] = 5^14 / 5^15 = 1/5
e)
[ 4^(1/3) / 8 ]^(-6/7) = [ 2^(2/3)/ 2^3]^( -6/7) = [ 2 ^(-7/3)]^(-6/7) =
= 2^((-7/3)*(-6/7)) = 2^2 = 4
===========================
z.2
log 3 [ 1/27 ] = - 3
log 5 [ 5^(1/3)] = 1/3
log 10^30 = 30
8^log 2 [1/5] = [2^3]^log 2 [ 1/5] = 2^ 3 log 2[1/5] = 2^log 2 [ (1/5)^3] =
= 2^log 2 [ 1/125] = 1/125
log 5[ 8 1/3] + log 5 [ 15] = log 5 [(25/3 ) * 15] = log 5 [ 125] = 3
f)
log 0,004 - log 0,04 = log [ 0,004/ 0,04] = log [ 1/10] = - 1
========================================================
Zad.1
Zad.11 Ciąg geometryczny
n-ty wyraz ciągu geometrycznego (an) o ilprazie q dla n ∈ N₊ \ {1} okreslony jest wzorem:
a) a₃ = 6 i a₄ = 18
a₄ = a₃ · q
q = a₄ : a₃ =
q = 18 : 6 = 3
a₃ = a₁ · q²
a₁ · 3² = 6
a₁ · 9 = 6 /:9
Odp. a₁ = ⅔ ; q = 3
a₂ = 8 i a₄ = 32
a₂ = a₁ · q
a₁ · q = 8
a₄ = a₁ · q³
a₁ · q³ = 32
Odp. a₁ = 4 i q = 2 lub a₁ = -4 i q = - 2
Zad. 12
q = - ⅔
a₆ = ³²/₂₇
a₆ = a₁ · q⁵
Zad. 13
Suma n początkowych wyrazów ciągu geoemtrycznego (an) wyraża się wzorem:
a₁ = 3 i q = - 2
Zad. 1
Zad. 2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
z.1
a) an = (3n - 2) / 2^n
a1 = (3*1 - 2)/2^1 = 1/2
a2 =(3*2 - 2)/2^2 = 4/4 = 1
a3 = (3*3 - 2)/2^3 = 7/8
a4 = (3*4 - 2 )/2^4 = 10/16 = 5/8
a5 = (3*5 - 2)/2^5 = 13/32
----------------------------------------
b)
an = 4 - n^2
a1 = 4 - 1^2 = 4 - 1 = 3
a2 = 4 - 2^2 = 4 - 4 = 0
a3 = 4 - 3^2 = 4 - 9 = - 5
a4= 4 - 4^2 = 4 - 16 = - 12
a5 = 4 - 5^2 = 4 - 25 = - 21
----------------------------------
c)
an = (-1)^n *(2n + 3)
a1 = (-1)^1 *(2*1+ 3) = - 5
a2 = (-1)^2 *(2*2 + 3) = 7
a3 = (-1)^3 *( 2*3 + 3) = - 9
a4 = (-1)^4 *(2*4 + 3) = 11
a5 = (-1)^5 *(2*5 + 3) = - 13
------------------------------------
z.11
Ciąg geometryczny
a) a3 = 6 oraz a4 = 18
Mamy
q = a4 : a3 = 18/6 = 3
a3 = a1*q^2 ---> a1 = a3 : q^2 = 6 : 3^2 = 6 : 9 = 2/3
Odp. a1 = 2/3 oraz q = 3
========================
b)
a2 = 8 oraz a4 = 32
Mamy
a2 = a1*q oraz a4 = a1*q^3
zatem
a4 : a2 = a1*q^3 : a1*q = q^2
ale a4 : a2 = 32 : 8 = 4
zatem
q^2 = 4
czyli q = - 2 lub q = 2
a1 = a2 : q = 8 : (-2) = - 4
lub
a1 = a2: q = 8 : 2 = 4
Odp.
a1 = - 4 oraz q = -2
lub
a1 = 4 oraz q = 2
=====================
z.12
q = - 2/3
a6 = 32/27
Mamy
a6 = a1*q^5 --> a1 = a6 : q^5
a1 = (32/27) : ( -2/3)^5 = (32/27) : ( - 32/243) = (32/27)*( - 243/32) =
= - 243/27 = - 9
========================
z.13
a1 = 3 oraz q = - 2
Oblicz
a) S6 = a1* [1 - q^6]/[1 - q]
S6 = 3*[ 1 - (-2)^6]/[1 - (-2)] = 3*[ 1 - 64]/3 = - 63
-----------------------------------------------------------------
b)
S7 = a1*[1 - q^7]/[ 1 - q] = 3*[ 1 - (-2)^7]/[ 1 - (-2)] =
= 3*[ 1 - 128]/3 = 1 - 128 = - 127
================================================
Potęgi i logarytmy
z.1
a)
( 2 1/3)^(-3) * ( 6/7)^(-3) = ( 7/3 *6/7)^(-3) = 2^(-3) = 1/2^3 = 1/8
b)
(1/9)^7 * 3 ^15 = (1/9)^7 * 3^7 * 3^8 = (1/9 * 3)^7 * 3^8 =
= (1/3)^7 *3^7 * 3 = 1*3 = 3
lub
(1/9)^7 * 3 ^15 = 3^15 / (3^2)^7 = 3^15/ 3^14 = 3
c)
( 1 2/3)^(-2/3) * ( 16 1/5) ^(-2/3) =[(1/27)^(1/3)] ^2 =
= (1/3)^2 = 1/9
d)
25^7 / 125^5 = [( 5^2)^7]/ [ (5^3)^5] = 5^14 / 5^15 = 1/5
e)
[ 4^(1/3) / 8 ]^(-6/7) = [ 2^(2/3)/ 2^3]^( -6/7) = [ 2 ^(-7/3)]^(-6/7) =
= 2^((-7/3)*(-6/7)) = 2^2 = 4
===========================
z.2
a)
log 3 [ 1/27 ] = - 3
b)
log 5 [ 5^(1/3)] = 1/3
c)
log 10^30 = 30
d)
8^log 2 [1/5] = [2^3]^log 2 [ 1/5] = 2^ 3 log 2[1/5] = 2^log 2 [ (1/5)^3] =
= 2^log 2 [ 1/125] = 1/125
e)
log 5[ 8 1/3] + log 5 [ 15] = log 5 [(25/3 ) * 15] = log 5 [ 125] = 3
f)
log 0,004 - log 0,04 = log [ 0,004/ 0,04] = log [ 1/10] = - 1
========================================================
Zad.1
a)
b)
c)
Zad.11 Ciąg geometryczny
n-ty wyraz ciągu geometrycznego (an) o ilprazie q dla n ∈ N₊ \ {1} okreslony jest wzorem:
a) a₃ = 6 i a₄ = 18
a₄ = a₃ · q
q = a₄ : a₃ =
q = 18 : 6 = 3
a₃ = a₁ · q²
a₁ · 3² = 6
a₁ · 9 = 6 /:9
Odp. a₁ = ⅔ ; q = 3
b)
a₂ = 8 i a₄ = 32
a₂ = a₁ · q
a₁ · q = 8
a₄ = a₁ · q³
a₁ · q³ = 32
Odp. a₁ = 4 i q = 2 lub a₁ = -4 i q = - 2
Zad. 12
n-ty wyraz ciągu geometrycznego (an) o ilprazie q dla n ∈ N₊ \ {1} okreslony jest wzorem:
q = - ⅔
a₆ = ³²/₂₇
a₆ = a₁ · q⁵
Zad. 13
Suma n początkowych wyrazów ciągu geoemtrycznego (an) wyraża się wzorem:
a₁ = 3 i q = - 2
a)
b)
Potęgi i logarytmy
Zad. 1
a)
b)
c)
d)
e)
Zad. 2
a)
b)
c)
d)
e)
f)