Podaj dwa przykłady ciągów geometrycznych;
a) rosnący o wyrazach dodatnich
b) malejący o wyrazach dodatnich
c) rosnący o wyrazach ujemnych d) malejący o wyrazach ujemnych
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
a1 = 2; q = 2
zatem
an = a1*q^(n -1) = 2*2^(n -1) = 2^n
--------------------------------------------
a1 = 5; q = 2
zatem
an =a1*q^(n -1) = 5*2^(n -1) = 5*(1/2)*2^n = 2,5*2^n
an = 2,5*2^n
================
b)
a1 = 4; q = 1/2
zatem
an = a1*q^(n -1) = 4*(1/2)^( n -1) = 4*2*(1/2)^n = 8*(1/2)^n
an = 8*(1/2)^n
=============
a1 = 27; q = 1/3
zatem
an = a1*q^(n -1) = 27*(1/3)^( n -1) = 27*3*(1/3)^n = 81*(1/3)^n
an = 81*(1/3)^n
================
c)
a1 = - 8; q = 1/2
zatem
an = a1*q^( n -1) = - 8 *(1/2)^(n -1) = - 8*2*(1/2)^n = - 16*(1/2)^2
an = -16*(1/2)^n
================
a1 = - 81; q = 1/3
zatem
an = - 81*(1/3)^( n -1) = - 81 *3*(1/3)^n = - 243* ( 1/3)^n
an = - 243*(1/3)^n
=====================
d)
a1 = - 5; q = 2
zatem
an = - 5*2^( n -1) = - 5*(1/2)*2^n = - 2,5 *2^n
an = -2,5 *2^n
===============
a1 = -1 ; q = 3
zatem
an = - 1*3^(n -1) = - 1* (1/3)*3^n = ( - 1/3)*3^n
an = ( - 1/3)*3^n
=====================