promien okregu r=3
kat ostry β=120° to ½β=60°
wysoksoc Δ =h
ramie Δ=b
podstawa Δ=x
tg60°=(½x)/h
√3=(½x)/h
½x=√3h
x=2√3h
cos60°=h/b
½=h/b
b=2h
pole Δ :
P=½·x·h=½·2√3h·h=√3h²
r=2P(x+b+b)=(2·√3 h²)/(2√3h++b)=(2√3h²) /(2√3h+2h+2h) =(2√3h²)/(2√3h+4h)
r=2√3h²/ 2h(√3+2)=√3h/(√3+2)
podstawiamy za r=3
3=√3h/(√3+2)
√3h=3(√3+2)
√3h=3√3+6
h=(3√3+6)/√3
h=3√3/√3 +6/√3
h=3+2√3
czyli :
podstawa x=2√3·h=2√3(3+2√3)=6√3+12=6(√3+2)
ramie b=2h=2·(3+2√3)=6+4√3=2(2√3+3)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
promien okregu r=3
kat ostry β=120° to ½β=60°
wysoksoc Δ =h
ramie Δ=b
podstawa Δ=x
tg60°=(½x)/h
√3=(½x)/h
½x=√3h
x=2√3h
cos60°=h/b
½=h/b
b=2h
pole Δ :
P=½·x·h=½·2√3h·h=√3h²
r=2P(x+b+b)=(2·√3 h²)/(2√3h++b)=(2√3h²) /(2√3h+2h+2h) =(2√3h²)/(2√3h+4h)
r=2√3h²/ 2h(√3+2)=√3h/(√3+2)
podstawiamy za r=3
3=√3h/(√3+2)
√3h=3(√3+2)
√3h=3√3+6
h=(3√3+6)/√3
h=3√3/√3 +6/√3
h=3+2√3
czyli :
podstawa x=2√3·h=2√3(3+2√3)=6√3+12=6(√3+2)
ramie b=2h=2·(3+2√3)=6+4√3=2(2√3+3)