mam zadanie z granicy ciągów lim = ( pierwiastek z n+1 - pierwiastek z n-1 ) Proszę o szybką pomoc
a^2 - b^2 = ( a - b)*( a + b)
zatem
a - b = [ a^2 - b^2 ]/( a + b)
czyli
p( n + 1) - p( n - 1) = [ n + 1 - ( n - 1)]/ [ p(n + 1) + p( n - 1) ] =
= 2 / [ p(n + 1) + p( n - 1)]
lim [ p( n + 1) - p(n -1)] =
n --> + oo
= lim [ 2/ ( p( n + 1) + p( n -1))] = 0
bo mianownik dąży do + oo
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a^2 - b^2 = ( a - b)*( a + b)
zatem
a - b = [ a^2 - b^2 ]/( a + b)
czyli
p( n + 1) - p( n - 1) = [ n + 1 - ( n - 1)]/ [ p(n + 1) + p( n - 1) ] =
= 2 / [ p(n + 1) + p( n - 1)]
lim [ p( n + 1) - p(n -1)] =
n --> + oo
= lim [ 2/ ( p( n + 1) + p( n -1))] = 0
n --> + oo
bo mianownik dąży do + oo