Mam pokazać napisać dowody wzorów skróconego mnożenia.takie na poziomie 3gim
(a+b)^2 =a^2 +2ab + b^2
(a+b)^2 =(a+b)(a+b) =a^2 +ab+ab+b^2 =a^2 +2ab +b^2
(a-b)^2 =a^2 -2ab + b^2
(a-b)^2 =(a-b)(a-b) =a^2 -ab-ab+b^2 =a^2 -2ab +b^2
(a-b)(a+b) =a^2 -b^2
(a-b)(a+b) =a^2 +ab -ab - b^2 =a^2 - b^2
(a+b)^3 =a^3 +3a^2b +3ab^2 + b^3
(a+b)^3 =(a+b)^2 *(a+b) =(a^2 +2ab + b^2)(a+b) =
a^3 +2a^2b +ab^2 + a^2b + 2ab^2 + b^3 =a^3 +3a^2b +3ab^2 +b^3
(a-b)^3 = a^3 -3a^2b +3ab^2 -b^3
(a-b)^3 =(a-b)^2 *(a-b) =(a^2 -2ab +b^2)(a-b) =
a^3 -2a^2b +ab^2 -a^2b +2ab^2 -b^3 =a^3 - 3a^2b + 3ab^2 -b^3
(^ do potęgi)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
(a+b)^2 =a^2 +2ab + b^2
(a+b)^2 =(a+b)(a+b) =a^2 +ab+ab+b^2 =a^2 +2ab +b^2
(a-b)^2 =a^2 -2ab + b^2
(a-b)^2 =(a-b)(a-b) =a^2 -ab-ab+b^2 =a^2 -2ab +b^2
(a-b)(a+b) =a^2 -b^2
(a-b)(a+b) =a^2 +ab -ab - b^2 =a^2 - b^2
(a+b)^3 =a^3 +3a^2b +3ab^2 + b^3
(a+b)^3 =(a+b)^2 *(a+b) =(a^2 +2ab + b^2)(a+b) =
a^3 +2a^2b +ab^2 + a^2b + 2ab^2 + b^3 =a^3 +3a^2b +3ab^2 +b^3
(a-b)^3 = a^3 -3a^2b +3ab^2 -b^3
(a-b)^3 =(a-b)^2 *(a-b) =(a^2 -2ab +b^2)(a-b) =
a^3 -2a^2b +ab^2 -a^2b +2ab^2 -b^3 =a^3 - 3a^2b + 3ab^2 -b^3
(^ do potęgi)