" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[sin(alfa)]^2 + 2*sin(alfa)*cos(alfa) + [cos(alfa)]^2 = (25/16)
[sin(alfa)]^2 + [cos(alfa)]^2 = 1 więc
2*sin(alfa)*cos(alfa) + 1 = (25/16)
2*sin(alfa)*cos(alfa) = (25/16) - 1
2*sin(alfa)*cos(alfa) = (9/16)
a) [sin(alfa) + cos(alfa)]^2 = [sin(alfa)]^2 - 2*sin(alfa)*cos(alfa) + [cos(alfa)]^2 =
= 1 - 2*sin(alfa)*cos(alfa) = 1 - (9/16) = 7/16
b) [sin(alfa)]^2 + [cos(alfa)]^2 = 1 podnosimy do kwadratu
[sin(alfa)]^4 + 2*[sin(alfa)]^2*[cos(alfa)]^2 + [cos(alfa)]^4 = 1
[sin(alfa)]^4 + [cos(alfa)]^4 = 1 -2*[sin(alfa)]^2*[cos(alfa)]^2
ponieważ
2*sin(alfa)*cos(alfa) = (9/16)
sin(alfa)*cos(alfa) = (9/32)
więc
[sin(alfa)]^4 + [cos(alfa)]^4 = 1 -2*(9/32)*(9/32)
[sin(alfa)]^4 + [cos(alfa)]^4 = 1 - 81/512
[sin(alfa)]^4 + [cos(alfa)]^4 = 431/512