" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
x+2+y+7+24-ciąg geometryczny
x-1
y-2
z-3
o wyrazach a1,a2,a3
a2 = a1 +r
a3 = a1 +2r
a1 + a2 + a3 = a1 +(a1+r)+(a1+2r) = 3a1 + 3r
3a1 + 3r = 6 / dzielimy przez 3
a1 + r = 2 ----> a1 = 2 - r
Ciąg geometryczny
a1 +2, a2 +7, a3 + 24 , czyli
a1 +2, a1 +r +7, a1 + 2r + 24,
wstawiamy(2 - r ) za a1 :
2-r +2 = 4-r,2-r +r +7 = 9, 2-r +2r +24 = r + 26, czyli
ciąg geometryczny
4-r, 9, r + 26 , zatem
9/(4-r) = (r + 26)/9
(4-r)(r + 26) = 9*9 = 81
4r + 104 -r² -26r = 81
-r²- 22r + 23 = 0
r² + 22 r - 23 = 0
Δ = 22² - 4*(-23) = 484 + 92 = 576
√Δ = 24
r1 = [-22- 24]/2 = -46/2 = -23
r2 = [-22+24]/2 = 2/2 = 1
I przypadek
r = -23
ciąg arytmetyczny
a1 = 2-r = 2 -(-23) = 2 +23 = 25
a2 = a1 + r = 25 +(-23) = 25 - 23 = 2
a3 = a1 + 2r = 25 +2*(-23) = 25 - 46 = - 21
ciąg geometryczny
25 +2 = 27
2 + 7 = 9
-21 + 24 = 3
q = 9/27 = 1/3
II przypadek
r = 1
a1 = 2-r = 2-1 = 1
a2 = a1 + r = 1 + 1 = 2
a3 = a1 + 2r = 1 +2*1 = 1+2 = 3
ciąg geometryczny
1 +2 = 3
2 + 7 = 9
3 +24 = 27
q = 9/3 = 3