f(x) = ln(x^2+1) - 1
Jak znalezc punkty zerowe tej funkcji? chodzi o wytlumaczenie. Odpowiedz to: x= -1,31 i x= 1,31.
f(x) = ln ( x^2 + 1) - 1
f(x) = 0 <=> ln ( x^2 + 1) - 1 = 0 <=> ln( x^2 + 1) = 1 <=> x^2 + 1 = e <=>
<=> x^2 = e - 1 <=> x = - p( e - 1) v x = p( e - 1 )
Jeżeli przyjmiemy e = 2,72
wtedy
x = - p( 2,72 - 1) v x = p( 2,72 - 1)
x = - p( 1,72) v x = p(1,72)
x = - 1,31 v x = 1,31
====================================
e - podstawa logarytmu naturalnego
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
f(x) = ln ( x^2 + 1) - 1
f(x) = 0 <=> ln ( x^2 + 1) - 1 = 0 <=> ln( x^2 + 1) = 1 <=> x^2 + 1 = e <=>
<=> x^2 = e - 1 <=> x = - p( e - 1) v x = p( e - 1 )
Jeżeli przyjmiemy e = 2,72
wtedy
x = - p( 2,72 - 1) v x = p( 2,72 - 1)
x = - p( 1,72) v x = p(1,72)
x = - 1,31 v x = 1,31
====================================
e - podstawa logarytmu naturalnego