Dany jest wielomian W(x) określony wzorem W(x)= x4 + mx3 + (n-1)x2 + mx + 3, wiedząc że W(1)=W(-1) oraz W(2)= 27, wyznacz m i n .
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
W(x) = x^4 + m x^3 + ( n -1) *x^2 + m x + 3
W(1) = W( -1) i W(2) = 27
zatem
1^4 + m*1^3 + ( n -1)*1^2 + m*1 + 3 = ( -1)^4 + m*( -1)^3 + ( n -1)*( -1)^2 + m*(-1) + 3
1 + m + n - 1 + m + 3 = 1 - m + n - 1 - m + 3
2 m + n + 3 = - 2 m + n + 3
4 m = 0
m = 0
======
W(2) = 2^4 + m*2^3 + ( n -1)*2^2 + m*2 + 3 =
= 16 + 8m + 4 n - 4 + 2 m + 3 = 10 m + 4 n + 15 = 27
Mamy
m = 0
10 m + 4 n = 12
-----------------------
10*0 + 4 n = 12
4 n = 12
n = 3
======
Odp. m = 0 , n = 3
============================