dany jest trojkat ABC, w ktorym |AB|=2√(19) i |∢ACB|=120°.
a)wyznacz dlugosci pozostalych bokow trojkata, wiedzac ze ich suma jest rowna 10
b)oblicz pole trojkata
odp:
a) a=4,b=6 lub a=6,b=4
b) P=6√3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
I AB I = c = 2 p(19)
I < ACB I = 120 st
a = I BC I , b = I AC I
oraz a + b = 10 => b = 10 - a
Z tw. cosinusów mamy:
c^2 = a^2 + b^2 - 2 a*b* cos I < ACB I
Po podstawieniu otrzymamy
( 2 p(19))^2 = a^2 + ( 10 -a)^2 - 2*a*(10 -a)*cos 120 st
4*19 = a^2 + 100 - 20a + a^2 - 2*a*( 10 - a)*( - sin 30 st)
76 = 2 a^2 - 20 a + 100 - 2*a*(10 -a)*( - 1/2)
76 = 2 a^2 - 20 a + 100 + 10a - a^2
a^2 - 10 a + 24 = 0
(a -4)*(a - 6) = 0
a = 4 lub a = 6
zatem
b = 10 - 4 = 6 lub b = 10 - 6 = 4
Odp. a = 4, b = 6 lub a = 6, b = 4
=================================
b)
P = 0,5 ab sin 120 st = 0,5*4*6 * cos 30 st =12 * p(3)/2 = 6 p(3)
=========================================================