" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
y = y1 + y2 + y3
y1 = 3x² - 1 / 3x³
(y1)' = (6x(3x³) - 9x²(3x²-1)) / (9x^6)
= (18 x^4 - 27x^4 + 9x² )/(9x^6)
= (-9x^4 + 9x^2) / (9x^6)
= 9x²(1 - x²)/(9x^6)
= (1-x²) / (x^4)
y2 = ln √1+x²
(y2)' = x / √1 +x²
y3 = arctanx
(y3)' = 1 / (1 + x²)
(y2)' + (y3)' = x / √(1+x²) + 1/(1+x²)
= (x√(1+x²) + 1)/ (1+x²)
(y1)'+(y2)'+(y3)' = (1-x²)/ x^4 + x√(1+x²) +1 )(1+x²)
= (1-x^4) + x^5√(1+x²) +x^4) / (x^4(1+x²)
= (1 + x^5√(1+x²)) / (x^4 + x^6)
y' =