1. Rozwiązaniem układu równań
\left \{ {{2x-y=0} \atop {x+y=9}} \right.
jest para liczb których
a) suma jest wieksza od 10
b) suma jest ujemna
c)iloczyn jest liczbą pierwszą
d)iloczyn jest liczbą parzystą
2. Jeżeli do zbioru układu równań
\left \{ {{x-y=0} \atop {ax+3y=b}} \right.
należą pary liczb (1,1) oraz (5,5) to do tego zbioru nalezy również para liczb:
a) (1,5)
b) (5,1)
c) (-2, -2)
d) (-1, -5)
3. Sytuację że Janek ma trzy razy więcej pieniedzy od Marka i jednoczesnie Janek ma o 40zl wiecej od Marka można opisać za pomocą układu równań :
a) \left \{ {{3x-y=0} \atop {x-40=y}} \right
b) \left \{ {{x=1/3y} \atop {x+40=y}} \right.
\left \{ {{x-3y=0} \atop {x+40=y}} \right.
\left \{ {{1/3x=y} \atop {x=y-40}} \right.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
2x-y=0
x+y=9
______+
3x=9
x=3
y=6
odp. D 3*6=18
2.
ta para punktow wyznacza prosta y=x
wiec kazda para liczb x=y spelnia ten uklad
odp. C
3.
y- ilosc pieniedzy Janka
x - __"___ Marka
y=3x /:3
x=y-40 /+40
1/3y=x
x+40=y
odp. B
1]
2x-y=0
x+y=9
3x=9
x=3
3+y=9
y=9-3
y=6
odp d, iloczyn liczb jest liczba parzystą
2]
(1,1)(5,5)
x=y
czyli
odp c (-2,-2)
3]
x=pieniadze Marka
y=pieniąsze Janka
x=1/3y
y=x+40
czyli odp B