1)
Oblicz stosujac wzory na potegi
6²*6¹⁷=
(¼)⁷*(¼)⁷=
(-5)⁴*(-5)⁹=
3⁻²⁰*3²⁰=
5¹⁷/5²=
5²*5¹⁷=
(⅛)⁷/(⅛)⁷=
(-3)⁷/(-3)⁴=
5⁻²⁰/5²⁰=
(7⁵)⁵=
(8⁻¹)²=
5⁻²*5⁻²=
4²/4²=
2⁻²/4⁻²=
2 )
Oblicz stosujac wlasnosci logarytmow
log₂ 4=
log₄ 64=
log₃ 9=
log₂ 16=
log⅛ √8=
log √₂₇ 81=
log₇ 7²⁰=
log⁸/₅ 5=
log₉ 81²=
3)
Rozwiaz rownania
log x 36=2
log x 81=4
log x ¹/₁₂₅=3
log₂x 8⁷=7
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1)
Oblicz stosujac wzory na potegi
6²*6¹⁷= 6¹⁹
(¼)⁷*(¼)⁷= [(¼)*(¼)]⁷ = [(½)⁴]⁷ = (½)²⁸
(-5)⁴*(-5)⁹= (-5)¹³
3⁻²⁰*3²⁰= 3⁰ =1
5¹⁷/5²= 5¹⁵
5²*5¹⁷ = 5¹⁹
(⅛)⁷/(⅛)⁷= (⅛)⁰ = 1
(-3)⁷/(-3)⁴=(-3)³
5⁻²⁰/5²⁰= 5⁻⁴⁰
(7⁵)⁵=7²⁵
(8⁻¹)²= 8⁻² = (2³)⁻² = 2⁻⁶
5⁻²*5⁻²= 5⁻⁴
4²/4²= 4⁰ = 1
2⁻²/4⁻²= 2⁻²/(2²)⁻² = 2⁻²/2⁻⁴= 2²
2 )
Oblicz stosujac wlasnosci logarytmow
log₂ 4= 2, bo 2² = 4
log₄ 64= 3, bo 4³ = 64
log₃ 9= 2, bo 3² = 9
log₂ 16= 4, bo 2⁴= 16
log⅛ √8= -½, bo (⅛)^(-½) = 8^(½) = √8
log √₂₇ 81= 8/3 , bo (√27)^(8/3) =[ (27)^(½)]^(8/3) = 27^(4/3) =
= [(3)³]^(4/3)= 3⁴ = 81
log₇ 7²⁰= 20*log₇7 = 20*1 = 20
log⁸/₅ 5=
log₉ 81²= 2*log₉81 = 2*2 = 4
3)
Rozwiaz rownania
log x 36=2
x² = 36
x = 6
log x 81=4
x⁴ = 81
x⁴ = 3⁴
x = 3
log x ¹/₁₂₅=3
x ³ = 1/125
x³ = (1/5)³
x = 1/5
log₂x 8⁷=7
(2x)⁷ = 8⁷
2x = 8
x = 4