September 2018 1 43 Report
1. Przekątna ściany bocznej graniastosłupa prawidłowego trójkątnego tworzy z wysokością graniastosłupa kąt o mierze 60*. Krawędź podstawy ma długość równą 12. Oblicz pole powierzchni bocznej tego graniastosłupa. 2. Dany jest graniastosłup prawidłowy sześciokątny którego krawędź boczna jest dwa razy dłuższa niż krawędź podstawy. Wyznacz sinus kąta nachylenia najdłuższej przekątnej graniastosłupa do płaszczyzny jego podstawy. 3. Przekątna sześcianu jest o 1 dłuższa od przekątnej jego ściany. Oblicz długość krawędzi sześcianu. 4. Dany jest ostrosłup prawidłowy czworokątny, którego objętość jest równa 18. Ściana boczna jest nachylona do płaszczyzny podstawy pod kątem, którego tangens jest równy 4. Oblicz wysokość tego ostrosłupa. 5. Dany jest ostrosłup prawidłowy trójkątny o wysokości dwa razy dłuższej niż krawędź jego podstawy. Oblicz sinus kąta nachylenia krawędzi bocznej ostrosłupa do płaszczyzny jego podstawy. 6. Podstawą graniastosłupa prostokątnego o przekątnej długości 30 jest prostokąt o bokach równych 12 i 16. Wyznacz objętość tego graniastosłupa. 7. Dany jest ostrosłup prawidłowy czworokątny o długości każdej krawędzi a=8. Wyznacz objętość tego ostrosłupa. 8. Dany jest ostrosłup prawidłowy sześciokątny. Krawędź boczna jest nachylona do podstawy pod kątem, którego cosinus jest równy 2/3. Suma długości wszystkich krawędzi ostrosłupa jest równa 60. Wyznacz długości krawędzi tego ostrosłupa. Proszę o pomoc. Z góry dziękuję.
More Questions From This User See All

Recommend Questions



Life Enjoy

" Life is not a problem to be solved but a reality to be experienced! "

Get in touch

Social

© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.