Znajsź pierwszy wyraz ciągu geometrycznego w którym a)q=2 I S8=765 b)q=2/3 i S4=65 c)q=-√2 i S6=-7
a]
S₈=a₁(1-q⁸) / (1-q)
765=a₁(1-2⁸)/(1-2)
765=a₁×(-255)/(-1)
a₁=765/255=3
b]
65=a₁[1-(⅔)⁴]/(1-⅔)
65=a₁×65/81×3
a₁=65*27/65
a₁=27
c]
-7=a₁[1-(-√2)⁶]/(1+√2)
-7=a₁(1-8)/(1+√2)
-7=a₁[(7-7√2)]
a₁=-7/(7-7√2)/-7=1+√2
a) q = 2, S₈ = 765, a₁ = ?
1 - q⁸
s₈ = a₁ · ----------
1 - q
1 - 2⁸ 1 - 256
a₁ · ---------- = 765 , a₁ · ------------ = 765
1 - 2 -1
- a₁ · ( -255) = 765
255 a₁ = 765 /:255
a₁ = 3
b) q = ⅔ , S₄ = 65 , a₁ = ?
1 - q⁴ 1 - (⅔)⁴ 1 - ¹⁶/₈₁
S₄ = a₁ · ------------ , a₁ · ------------- = 65 , a₁ · ------------- = 65
1 - q 1 - ⅔ ⅓
a₁ · ⁶⁵/₈₁ · 3 = 65
a₁ · ⁶⁵/₂₇ = 65 /: ⁶⁵/₂₇
a₁ = 65 ·²⁷/₆₅ , a₁ = 2 7
c) q = -√2 , S₆ = -7 , a₁ = ?
1 - q⁶ 1 - (-√2)⁶ 1 - 8
S₆ = a₁ · ------------- , a₁ · ------------ = -7 , a₁ · ------------- = -7
1 - q 1 - (-√2) 1 + √2
a₁ ·(-7)
-------------- = -7 / ·(1+√2)
1 + √2
-7a₁ = -7 (1+√2) /:(-7)
a₁ = 1 + √2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a]
S₈=a₁(1-q⁸) / (1-q)
765=a₁(1-2⁸)/(1-2)
765=a₁×(-255)/(-1)
a₁=765/255=3
b]
65=a₁[1-(⅔)⁴]/(1-⅔)
65=a₁×65/81×3
a₁=65*27/65
a₁=27
c]
-7=a₁[1-(-√2)⁶]/(1+√2)
-7=a₁(1-8)/(1+√2)
-7=a₁[(7-7√2)]
a₁=-7/(7-7√2)/-7=1+√2
a) q = 2, S₈ = 765, a₁ = ?
1 - q⁸
s₈ = a₁ · ----------
1 - q
1 - 2⁸ 1 - 256
a₁ · ---------- = 765 , a₁ · ------------ = 765
1 - 2 -1
- a₁ · ( -255) = 765
255 a₁ = 765 /:255
a₁ = 3
b) q = ⅔ , S₄ = 65 , a₁ = ?
1 - q⁴ 1 - (⅔)⁴ 1 - ¹⁶/₈₁
S₄ = a₁ · ------------ , a₁ · ------------- = 65 , a₁ · ------------- = 65
1 - q 1 - ⅔ ⅓
a₁ · ⁶⁵/₈₁ · 3 = 65
a₁ · ⁶⁵/₂₇ = 65 /: ⁶⁵/₂₇
a₁ = 65 ·²⁷/₆₅ , a₁ = 2 7
c) q = -√2 , S₆ = -7 , a₁ = ?
1 - q⁶ 1 - (-√2)⁶ 1 - 8
S₆ = a₁ · ------------- , a₁ · ------------ = -7 , a₁ · ------------- = -7
1 - q 1 - (-√2) 1 + √2
a₁ ·(-7)
-------------- = -7 / ·(1+√2)
1 + √2
-7a₁ = -7 (1+√2) /:(-7)
a₁ = 1 + √2