zad1(z tłumaczeniem)
Oblicz miary kątów ostrych alfa i beta trójkata prostokatnego jesli wiadomo ze zachodzi zaleznosc :
a) tg beta=2cos alfa
b)cos alfa *sin beta=1/2
zad2(z tłumaczenie)
oblicz miary katów deltoidu o przekątnych dł30i45 w którym punkt przecięcia przękątnych dzieli dłuższą z nich w stosunku 2:1
zad3z tłumaczeniem
Oblicz pole trapezy prostokątnego opisanego na kole o r=5 i o krótszej popdstawie 1,5r. (Jak liczyłam to b=7,5 a h=10 nie umiem wyliczyć a:( )
zad4
w ostrosłupie prawidłowym czworokątnym wszystkie krawędzie sa równej długości. Oblicz :
a)pole powierzchni bocznej wiedzac że krawedz podstawy a=2
b) miarę kąta między krawędzią boczną a wysokością ostrosłupa
W a) mi wyszło4pierwiastek z 3 a w b) ze 45stopni ale nie wiem czy dobrze:(
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
z.1
a) tg beta = 2 cos alfa
a,b - długości przyprostokatnych
c - długość przeciwprostokatnej
Mamy
tg beta = b/a
cos alfa = b/c
czyli
b/a = 2*( b/c) / : b
1/a = 2/c
c = 2 a
======
sin alfa = a/c = a / (2a) = 1/2
więc
alfa = 30 stopni
===============
beta = 90 st - alfa = 60 st
========================
b)cos alfa * sin beta = 1/2
czyli
( b /c )*( b/c) = 1/2
( b/ c)^2 = 1/2
b/c = 1 / p(2) = p(2)/2
b = c* p(2)/2
=============
cos alfa = b/c = [ c * p(2)/2 ] /c = p(2)/2
alfa = 45 st
=============
beta = 90 st - alfa = 45 st
=========================
z.2
30 i 45 długości przekatnych deltoidu
45 : ( 2 + 1) = 45 : 3 = 15
2* 15 = 30
Deltoid składa się z dwóch trójkątów prostokątnych o przyprostokątnych długości 15
oraz dwóch trójkatówq prostokatnych o długościach przyprostokątnych 15 i 30.
tg alfa = 15/15 = 1
alfa = 45 st
2*45 st = 90 st
Kąt pomiędzy krótszymi bokami deltoidu ma miarę 90 st.
===================================================
tg beta = 15/30 = 1/2
beta = około 26 st 30 '
2* 26 st 30 min = 53 st
Kąt pomiędzy dłuższymi bokami deltoidu ma miarę równą około 53 st
===============================================================
Suma miar kątów wewnetrznych czworokąta jest równa 2*180 st = 360 st
zatem
90 st + 53 st + 2 gamma = 360 st
2 gamma = 217 st
gamma = 108 st 30 '
====================
Katy między krótszymi i dłuższymi bokami deltoidu mają miarę około 108 st 30 '
========================================================================
z.3
r = 5
b = 1,5 r
Mamy
h = 2 *r = 2*5 = 10
b = 1,5 * 5 = 7,5
c - długość dłuższego ramienia
a = b + x = 7,5 + x
oraz
a + b = 2r + c
czyli
7,5 + x + 7,5 = 10 + c
15 + x = 10 + c
c = x + 5
----------
Z tw. Pitagorasa mamy
h^2 + x^2 = c^2
czyli
10^2 + x^2 = ( x + 5)^2
100 + x^2 = x^2 + 10 x + 25
10 x = 75
x = 7,5
-------------
a = b + x = 7,5 + 7,5 = 15
========================
Pole trapezu:
P = 0,5 * [ a +b ]*h
P = 0,5 *[ 15 + 7,5 ] * 10 = 5* 22,5 = 112,5
Odp. P = 112, 5
===================
z.4
a - długość krawędzi ostrosłupa
a) a = 2
Pb = 4 * a^2 p(3)/4 = a^2 p(3) = 2^2 p(3) = 4 p(3)
===========================================
b)
a p(2) - długośc przekatnej kwadratu ( podstawy ostrosłupa )
2 p(2)
x = (1/2) *2 p(2) = p(2)
sin alfa = x/a = p(2)/2
więc
alfa = 45 st
===================
zad.1
a)
tgβ = 2cosα
tgβ = ctgα
ctgα = sinα/cosα
sinα/cosα = 2cosα
sinα = 2cos²α
sinα = 2(1 - sin²α)
sinα = 2 - 2sin²α
2sin²α +sinα -2 = 0
Δ = 1 +16 = 17
sinα = (-1 -√17)/4 < 0 sprzeczne
sinα = (-1 +√17)/4 ≈ 0.7808
α ≈ 51°
β = 180° -90° -51° = 39°
b)
cosα * sinβ = 1/2
sinβ = cosα
cosα * cosα = 1/2
cos²α = 1/2
cosα = 0.25
α ≈ 76°
β = 180° -90° -76° = 14°
zad.2
czyli krotsza przekatna dzieli dluzsza na odcinki dlugosci 30 i 15
w srodku deltoidu tworza nam sie trojkaty prostokatne i mamy dlugosci 2 bokow kazdego trojkata wiec po prostu liczymy kat
w tym wypadku z tangensa lub cotangensa bo nie mamy przeciwprostokatnych
moznaby bylo obliczyc ale nic to nie zmienia
2 z powstalych trojkatow beda rownoramienne wiec wiadomo ze bede miec kąty 90°, 45° i 45°
wiemy wiec juz ze jeden z katow deltoidu ma 90°(45° *2 bo jest sumą kątow 2 takich samych trojkatow rownoramiennych)
α - polowa kata naprzeciwko kata 90°
tgα = 15/30 = 1/2
α ≈ 27°
drugi kąt deltoidu jest równy dwóm kątom α czyli 2 * 27° = 54°
pozostałe 2 kąty deltoidu są takie same a suma miar katów w czworokącie wynosi 360° wiec mozemy po prostu odjac katy ktore juz znamy i wynik podzielic przez 2
(360°- 90° - 54°) /2 = 108°
pozostale 2 kąty mają po 108° stopni kazdy
zad.3
h = 2r = 2*5 = 10
b = 1.5r = 1.5 * 5 = 7.5
a = b + x = 7,5 + x
a + b = 2r + c
7,5 + x + 7,5 = 10 + c
15 + x = 10 + c
c = x + 5
h² + x² = c²
10² + x² = (x + 5)²
100 + x² = x² + 10x + 25
10 x = 75
x = 7,5
a = b + x = 7,5 + 7,5 = 15
P = (a +b)*h /2 = (15+7.5)*10 /2 = 112.5
zad.4
a)
Pb = 4 * (a²√3)/4 = a²√3 = 4√3
b)
d = a√2 = 2√2
sinα = (d/2) / a = √2/2
α = 45°