dany jest okrag o srodku O i dlugosci promienia r. oblicz najwieksza wartosc pola trojkata ABO, gdzie odcinek AB jest cieciwa danego okregu.
odp: P=1/2r²
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
P = (1/2) * r^2 * sin alfa
Największa wartość pola jest wtedy ,gdy sin alfa przyjmuje największą wartość ,czyli 1,
zatem
P max = (1/2)* r^2
============================
Wtedy alfa = 90 stopni.