Zbadaj monotoniczność ciągu:
a) an=n/n+4
b) an= 4n+1/3n+1
c) an= n+2/2n+3
an+1 = (n+1)/n+1+4 = (n+1)/n+5
czyli
an+1 - an = (n+1)/n+5 - n/n+4 = (n+1)(n+4) /(n+5)(n+4) - n(n+5)/(n+4)(n+5)
(n²+4n+n+4)-(n²+5n)/(n+4)(n+5) = (n²+5n+4-n²-5n)/(n+4)(n+5) = 4/(n+4)(n+5)
dla każdego n∈N wyrażenie jest dodatnie, czyli ciąg jest rosnacy
an+1 = 4(n+1)+1/[3(n+1)+1 = (4n+5)/(3n+4)
an+1-an = (4n+5)/(3n+4) - (4n+1)/(3n+1) = (4n+5)(3n+1)/(3n+4)(3n+1) - (4n+1)(3n+4)/(3n+4)(3n+1) = (12n²+4n+15n+5)/(3n+4)(3n+1) - (12n²+16n+3n+4)/(3n+4)(3n+1) =
(12n²+19n+5-12n²-19n-4)/(3n+4)(3n+1) = 1/(3n+4)(3n+1)
an+1 = (n+1+2)/{2(n+1)+3 = (n+3)/(2n+5)
an+1 - an = (n+3)(2n+3)/(2n+5)(2n+3) - (n+2)(2n+5)/(2n+5)(2n+3) =
(2n²+3n+6n+9)/(2n+5)(2n+3) - (2n²+5n+4n+10)/(2n+5)(2n+3)=
(2n²+9n+9-2n²-9n-10)/(2n+5)(2n+3) = -1/(2n+5)(2n+3)
dla każdego n∈N wyrażenie jest ujemne, czyli ciąg jest malejący
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a) an=n/n+4
an+1 = (n+1)/n+1+4 = (n+1)/n+5
czyli
an+1 - an = (n+1)/n+5 - n/n+4 = (n+1)(n+4) /(n+5)(n+4) - n(n+5)/(n+4)(n+5)
(n²+4n+n+4)-(n²+5n)/(n+4)(n+5) = (n²+5n+4-n²-5n)/(n+4)(n+5) = 4/(n+4)(n+5)
dla każdego n∈N wyrażenie jest dodatnie, czyli ciąg jest rosnacy
b) an= 4n+1/3n+1
an+1 = 4(n+1)+1/[3(n+1)+1 = (4n+5)/(3n+4)
an+1-an = (4n+5)/(3n+4) - (4n+1)/(3n+1) = (4n+5)(3n+1)/(3n+4)(3n+1) - (4n+1)(3n+4)/(3n+4)(3n+1) = (12n²+4n+15n+5)/(3n+4)(3n+1) - (12n²+16n+3n+4)/(3n+4)(3n+1) =
(12n²+19n+5-12n²-19n-4)/(3n+4)(3n+1) = 1/(3n+4)(3n+1)
dla każdego n∈N wyrażenie jest dodatnie, czyli ciąg jest rosnacy
c) an= n+2/2n+3
an+1 = (n+1+2)/{2(n+1)+3 = (n+3)/(2n+5)
an+1 - an = (n+3)(2n+3)/(2n+5)(2n+3) - (n+2)(2n+5)/(2n+5)(2n+3) =
(2n²+3n+6n+9)/(2n+5)(2n+3) - (2n²+5n+4n+10)/(2n+5)(2n+3)=
(2n²+9n+9-2n²-9n-10)/(2n+5)(2n+3) = -1/(2n+5)(2n+3)
dla każdego n∈N wyrażenie jest ujemne, czyli ciąg jest malejący