1. Liczby r1 i r2 sa pierwiastkami wielomianu W(x). Znajdź trzeci pierwiastek tego wielomianu, jeśli:
a) W(x)= x3 - ( a+b)x2 - (a-b)x+3, r1=1, r2=3
2.Wyznacz takie wartości parametrów a i b, aby liczby r1 i r2 były pierwiastkami wielomianu W(x), jeśli:
a) W(x)=x3 + ax2 + bx -9 r1= -1, r2=3
x3- oznacza x do potegi trzeciej
x2 - x do kwadratu
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1.
r₁ i r₂ - pierwiastki wielomianu W(x), czyli W(r₁) = 0 i W(r₂) = 0
a) W(x) = x³ - ( a + b)·x² - (a - b)·x + 3, r₁= 1, r₂ = 3
W(1) = 1³ - ( a + b)·1² - (a - b)·1 + 3 = 1 - (a + b) - (a - b) + 3 = 1 - a - b - a + b + 3 = - 2a + 4
- 2a + 4 = 0
- 2a = - 4 /:(- 2)
a = 2
W(3) = 3³ - ( 2 + b)·3² - (2 - b)·3 + 3 = 27 - (2 + b)·9 - (6 - 3b) + 3 = 27 - (18 + 9b) - 6 + 3b + 3 = 27 - 18 - 9b - 6 + 3b + 3 = - 6b + 6
- 6b + 6 = 0
- 6b = - 6 /:(- 6)
b = 1
W(x) = x³ - ( 2 + 1)·x² - (2 - 1)·x + 3 = x³ - 3x² - x + 3
x³ - 3x² - x + 3 = 0
x²·(x - 3) - 1·(x - 3) = 0
(x - 3)(x² - 1) = 0
(x - 3)(x - 1)(x + 1) = 0
x - 3 = 0 lub x - 1 = 0 lub x + 1 = 0
x - 3 = 0
x = 3
x - 1 = 0
x = 1
x + 1 = 0
x = - 1
Odp. Trzeci pierwiastek wielomianu W(x) to liczba - 1.
2.
r₁ i r₂ - pierwiastki wielomianu W(x), czyli W(r₁) = 0 i W(r₂) = 0
a) W(x) = x³ + ax² + bx - 9 r₁= - 1, r₂ = 3
W(- 1) = (- 1)³ + a·(- 1)² + b·(- 1) - 9 = - 1 + a - b - 9 = a - b - 10
a - b - 10 = 0
W(3) = 3³ + a·3² + b·3 - 9 = 27 + 9a + 3b - 9 = 9a + 3b + 18
9a + 3b + 18 = 0 /:3
3a + b + 6 = 0
Stąd:
{a - b - 10 = 0
{3a + b + 6 = 0
____________
4a - 4 = 0
4a = 4 /:4
a = 1
3a + b + 6 = 0
3·1 + b + 6 = 0
b + 9 = 0
b = - 9
{a = 1
{b = - 9
Spr.
W(x) = x³ + ax² + bx - 9
W(x) = x³ + x² - 9x - 9
x³ + x² - 9x - 9 = 0
x²·(x + 1) - 9·(x + 1) = 0
(x + 1)(x² - 9) = 0
(x + 1)(x - 3)(x + 3) = 0
x + 1 = 0 lub x - 3 = 0 lub x + 3 = 0
x + 1 = 0
x = - 1
x - 3 = 0
x = 3
x + 3 = 0
x = - 3
Odp. a = 1, b = - 9