1. Rozwiąż nierówność
2. Zapisz wzór funkcji w postaci kanonicznej
3. Zapisz wzór funkcji w postaci iloczynowej
Zad. 1
a)
9x < 2x² + 10
2x² -9x + 10 <0
Δ = b² - 4ac = (-9)² - 4*2*10 = 81 – 80 = 1
√Δ = √1 = 1
x₁ = (-b-√Δ)/2a = (9-1)/4 = 8/4 = 2
x₁ = (-b+√Δ)/2a = (9+1)/4 = 10/4 = 2,5
a>0 ramiona paraboli do góry
x € (2 ; 2,5 )
b)
6x² + 13x + 6 < 0
Δ = b² - 4ac = 13² - 4*6*6 = 169 –144 = 25
√Δ = √25 = 5
x₁ = (-b-√Δ)/2a = (-13-5)/12 = -18/12 = - 3/2 = -1i1/2
x₁ = (-b+√Δ)/2a = (-13+5)/12 = -8/12 = -2/3
x € (-3/2 ; -2/3 )
zad.2
y = -2x² + 5x -1
f(x) = a(x-p)² + q
p = -b/2a q = - Δ/4a
Δ = b² - 4ac = 5² - 4*(-2) *(-1) = 25 – 8 = 17
p = -5/(2*-2) = 5/4 =1,25
q = - 17/(4*-2) = 17/8 = 2,125
f(x) = -2(x -1,25)² + 2,125 postać kanoniczna
zad.3
f(x) = 2x² + 2x -4
f(x) = a(x-x₁)(x-x₂) x₁, x₂ miejsca zerowe
Δ = b² - 4ac = 2² - 4*2*(-4) = 4 +32 = 36
√Δ = √36 = 6
x₁ = (-b-√Δ)/2a = (-2-6)/4 = -8/4 = -2
x₁ = (-b+√Δ)/2a = (-2+6)/4 = 4/4 = 1
f(x) = 2(x + 2)(x-1) postać iloczynowa
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Zad. 1
a)
9x < 2x² + 10
2x² -9x + 10 <0
Δ = b² - 4ac = (-9)² - 4*2*10 = 81 – 80 = 1
√Δ = √1 = 1
x₁ = (-b-√Δ)/2a = (9-1)/4 = 8/4 = 2
x₁ = (-b+√Δ)/2a = (9+1)/4 = 10/4 = 2,5
a>0 ramiona paraboli do góry
x € (2 ; 2,5 )
b)
6x² + 13x + 6 < 0
Δ = b² - 4ac = 13² - 4*6*6 = 169 –144 = 25
√Δ = √25 = 5
x₁ = (-b-√Δ)/2a = (-13-5)/12 = -18/12 = - 3/2 = -1i1/2
x₁ = (-b+√Δ)/2a = (-13+5)/12 = -8/12 = -2/3
a>0 ramiona paraboli do góry
x € (-3/2 ; -2/3 )
zad.2
y = -2x² + 5x -1
f(x) = a(x-p)² + q
p = -b/2a q = - Δ/4a
Δ = b² - 4ac = 5² - 4*(-2) *(-1) = 25 – 8 = 17
p = -5/(2*-2) = 5/4 =1,25
q = - 17/(4*-2) = 17/8 = 2,125
f(x) = -2(x -1,25)² + 2,125 postać kanoniczna
zad.3
f(x) = 2x² + 2x -4
f(x) = a(x-x₁)(x-x₂) x₁, x₂ miejsca zerowe
Δ = b² - 4ac = 2² - 4*2*(-4) = 4 +32 = 36
√Δ = √36 = 6
x₁ = (-b-√Δ)/2a = (-2-6)/4 = -8/4 = -2
x₁ = (-b+√Δ)/2a = (-2+6)/4 = 4/4 = 1
f(x) = 2(x + 2)(x-1) postać iloczynowa