. Zbadaj czy trójkąty ABC i DEF są podobne jeżeli: A = ( 2; 3 ) , B = ( 8;3), C = ( 5 ; 7 ) oraz D = ( 1; -8 ) , E = ( -11; -8 ) , F = ( -5 ; - 16 )
Janek191
A =(2;3) , B =(8;3) , C = (5;7) D =(1; -8), E =(-11; -8), F = (-5; -16)
wektor AB = [8-2;3-3] = [6;0] AB = 6 wektor BC = [5-8;7-3] = [-3;4] BC = √(-3)²+4² = √9+16 = = √25 = 5 wektor AC = [5-2; 7-3] = [ 3;4] AC = √(3²+4²) = √25 = 5 ΔABC jest równoramienny.
wektor DE = [-11-1;-8-(-8)] = [-12;0] DE = 12 wektor EF = [-5 -(-11); -16 -(-8)] = [6;-8] EF = √(6² +(-8)²) = √(36+64) = √100 = 10 wektor DF = [-5-1;-16 -(-8)] = [-6;-8] DF = √100 = 10 Sprawdzamy proporcje DE/AB = 12/6 = 2 EF/BC = 10/5 = 2 Df/AC = 10/5 = 2 Odp. Te trójkąty są podobne.
D =(1; -8), E =(-11; -8), F = (-5; -16)
wektor AB = [8-2;3-3] = [6;0]
AB = 6
wektor BC = [5-8;7-3] = [-3;4]
BC = √(-3)²+4² = √9+16 = = √25 = 5
wektor AC = [5-2; 7-3] = [ 3;4]
AC = √(3²+4²) = √25 = 5
ΔABC jest równoramienny.
wektor DE = [-11-1;-8-(-8)] = [-12;0]
DE = 12
wektor EF = [-5 -(-11); -16 -(-8)] = [6;-8]
EF = √(6² +(-8)²) = √(36+64) = √100 = 10
wektor DF = [-5-1;-16 -(-8)] = [-6;-8]
DF = √100 = 10
Sprawdzamy proporcje
DE/AB = 12/6 = 2
EF/BC = 10/5 = 2
Df/AC = 10/5 = 2
Odp. Te trójkąty są podobne.