" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
B)
zad 8
Oznaczenia jak w załaczniku.
a)
Kąt BEC = AED = alfa
sin alfa = h/(0,5*|AC|)
sin alfa = h/5
h = 5sin alfa
Ponieważ kat alfa jest ostry to
sin alfa = √(1-cos^2 alfa) = √(1-0,4^2) = √(1-0,16) = √0,84 = √84/10 = 2√21/10 = √21/5
h = 5*√21/5 = √21 ≈ 4,58
b) tg β = ?
β = α/2
tg α/2 = (1-cosα)/sinα =(1-0,4)/(√21/5) = 0,6*5/(√21) = 3/√21 = 3*√21/21 = √21/7
9)
a,b - przyprostokątne
c - przeciwprostokatna
sin β = b/c
cos β = a/c
sin β + cos β = 6/5
b/c + a/c = 6/5
(b+a)/c = 6/5
Niech c = 5
wtedy
b+a = 6 ⇒ b = 6-a
Z tw Pitagorasa
a^2 + b^2 = c^2
a^2 + (6-a)^2 = 5^2
a^2 + 36 - 12a + a^2 = 25
2a^2 - 12a + 11 = 0
Δ = (-12)^2 - 4*2*11 = 144 - 88 = 56
√Δ = √56 =2√14
a = (12-2√14)/4 = (6-√14)/2
b= 6-(6-√14)/2 = (12-6+√14)/2 = (6+√14)/2
lub
a = (12+2√14)/4 = (6+√14)/2
b = 6-(6+√14)/2 = (12-6-√14)/2 = (6-√14)/2
cosα/cosβ + tg^(-1)β = cos(90-β)/cosβ + ctgβ = sinβ/cosβ + cosβ/sinβ = (sin^2β+cos^2β)/(sinβ*cosβ) = 1/(sinβ*cosβ)
sinβ*cosβ = b/c * a/c = ab/c^2
1/(sinβ*cosβ) = c^2/(a*b) = 5^2/[(6+√14)/2*(6-√14)/2] = 25*4/(36-14) = 100/22 = 4,(54)
Albo innym sposobem:
sinβ + cosβ = 6/5
cosβ = √(1-sin^2β)
sinβ + √(1-sin^2β) = 6/5
√(1-sin^2β) = 6/5 - sinβ |^2
1-sin^2β = 36/25 - 12/5sinβ + sin^2β
2sin^2β - 12/5 sinβ + 11/25 = 0 |*25
50sin^2β - 60 sinβ + 11 = 0
Δ = (-60)^2 - 4*50*11 =1400
√Δ = 10√14
sinβ = (60-10√14)/100 = 0,6 - 0,1√14
cosβ = 6/5-sinβ = 1,2 - 0,6 + 0,1√14 = 0,6+0,1√14
lub
sinβ = (60+10√14)/100 = 0,6 + 0,1√14
cosβ = 1,2-0,6-0,1√14 = 0,6 - 0,1√14
α = 180 - 90 - β = 90-β
cosα/cosβ + tg^(-1)β = cos(90-β)/cosβ + ctgβ = sinβ/cosβ + cosβ/sinβ = (sin^2β+cos^2β)/(sinβ*cosβ) = 1/(sinβ*cosβ)
sinβ*cosβ=(0,6 - 0,1√14) *(0,6+0,1√14) = 0,36 - 0,01*14 = 0,36-0,14 = 0,22
1/(sinβ*cosβ) = 1/0,22 = 1/(22/100) = 100/22 = 4,(54)