x^7 - 17x^5 + 16x^3 = 0 rozwiąż równanie
x^3(x^4-17x^2 +16)=0
x^3=0
x=0 (3-krotny)
x^4-17x^2+16=0
x^2=t
t^2 -17t+16=0
Δ=b^2-4ac=289-64=225 √Δ=15
t1=(-b-√Δ)/2a=(17-15)/2=2/2=1
t2=(-b+√Δ)/2a=(17+15)/2=32/2=16
x^2=1 ∨ x^2=16
x=±1 x=±4
odp:
x∈{ -4 , -1 , 0 , 1 , 4}
x⁷ - 17x⁵ + 16x³ = 0
x³ (x⁴ - 17x² + 16) = 0
x³ = 0
x = 0
lub
x⁴ - 17x² + 16 = 0
x² = t
t² - 17t + 16 = 0
∆ = b² - 4ac
∆ = (-17)² - 4 * 1 * 16 = 289 – 64 = 225
√∆ = √225 = 15
t₁ = (-b - √∆)/2a = (17 – 15)/2 = 2/2 = 1
t₂ = (-b + √∆)/2a = (17 + 15)/2 = 32/2 = 16
x² = 1
x² - 1 = 0
(x-1)(x+1) = 0
x -1 = 0 lub x + 1 = 0
x = 1 lub x = -1
x² = 16
x² - 16 = 0
(x-4)(x+4) = 0
x-4 = 0 lub x+4 = 0
x = 4 lub x = -4
rozwiązaniem rozwiązania jest :
x ϵ { 0 , 1 ,-1, 4, -4 }
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
x^3(x^4-17x^2 +16)=0
x^3=0
x=0 (3-krotny)
x^4-17x^2+16=0
x^2=t
t^2 -17t+16=0
Δ=b^2-4ac=289-64=225 √Δ=15
t1=(-b-√Δ)/2a=(17-15)/2=2/2=1
t2=(-b+√Δ)/2a=(17+15)/2=32/2=16
x^2=1 ∨ x^2=16
x=±1 x=±4
odp:
x∈{ -4 , -1 , 0 , 1 , 4}
x⁷ - 17x⁵ + 16x³ = 0
x³ (x⁴ - 17x² + 16) = 0
x³ = 0
x = 0
lub
x⁴ - 17x² + 16 = 0
x² = t
t² - 17t + 16 = 0
∆ = b² - 4ac
∆ = (-17)² - 4 * 1 * 16 = 289 – 64 = 225
√∆ = √225 = 15
t₁ = (-b - √∆)/2a = (17 – 15)/2 = 2/2 = 1
t₂ = (-b + √∆)/2a = (17 + 15)/2 = 32/2 = 16
x² = 1
x² - 1 = 0
(x-1)(x+1) = 0
x -1 = 0 lub x + 1 = 0
x = 1 lub x = -1
lub
x² = 16
x² - 16 = 0
(x-4)(x+4) = 0
x-4 = 0 lub x+4 = 0
x = 4 lub x = -4
rozwiązaniem rozwiązania jest :
x ϵ { 0 , 1 ,-1, 4, -4 }