rozwiąż równanie
a)(x+1)/2=8/(x-5)
b)(2x+10)/(x+5)=x-2
a) zał. x ≠ 5
(x+1)/2=8/(x-5)
(x - 5)*(x +1) = 2 * 8
x² + x - 5x - 5 = 16
x² - 4x - 5 - 16 = 0
x² - 4x - 21 = 0
a = 1, b = -4, c = -21
Δ = b² - 4ac = 16 + 84 = 100
√Δ = 10
x1 = (-b - √Δ) / 2a = (4 - 10) / 2 = -6/2 = -3 ∈ D
x2 = (-b + √Δ) / 2a = (4 + 10) / 2 = 14/2 = 7 ∈ D
odp. x = -3 , x = 7
b) D: x ≠ -5
(2x+10)/(x+5) = (x-2) / 1
2x + 10) * 1 = (x +5)(x - 2)
2x + 10 = x² - 2x + 5x - 10
x² + 3x - 10 = 2x + 10
x² + 3x - 2x - 10 - 10 = 0
x ² + x - 20 = 0
Δ = 1 + 80 = 81
√Δ = 9
x1 = (-1 - 9) / 2 = -10 / 2 = -5 ∉ D
x2 = (-1 +9) / 2 = 8 / 2 = 4 ∈ D
odp. x = 4
a)
x≠5
(x+1)/2=8/(x-5) /*2
x+1=16/(x-5) /*(x-5)
(x+1)(x-5)=16
x^2-5x+x-5=16 /-16
x^2-4x-21=0
Δ=16-4*(-21)*1
Δ=100
√100=10
x1=4-10/2=-3
x2=4+10/2=7
b)
x≠-5
(2x+10)/(x+5)=x-2 /*(x+5)
2x+10=(x-2)(x+5)
2x+10=x^2+5x-2x-10
2x+10=x^2+3x-10 /-10
2x=x^2+3x-20 /-2x
x^2+x-20=0
Δ=1-4^(-20)*1
Δ=1+80
Δ=81
√81=9
x1=-1-9/2=-5 minus pięć nie może być, ponieważ mamy założenie więc:
x2=-1+9/2=4
x=4 ---- porawna odpowiedź.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a) zał. x ≠ 5
(x+1)/2=8/(x-5)
(x - 5)*(x +1) = 2 * 8
x² + x - 5x - 5 = 16
x² - 4x - 5 - 16 = 0
x² - 4x - 21 = 0
a = 1, b = -4, c = -21
Δ = b² - 4ac = 16 + 84 = 100
√Δ = 10
x1 = (-b - √Δ) / 2a = (4 - 10) / 2 = -6/2 = -3 ∈ D
x2 = (-b + √Δ) / 2a = (4 + 10) / 2 = 14/2 = 7 ∈ D
odp. x = -3 , x = 7
b) D: x ≠ -5
(2x+10)/(x+5) = (x-2) / 1
2x + 10) * 1 = (x +5)(x - 2)
2x + 10 = x² - 2x + 5x - 10
x² + 3x - 10 = 2x + 10
x² + 3x - 2x - 10 - 10 = 0
x ² + x - 20 = 0
Δ = 1 + 80 = 81
√Δ = 9
x1 = (-1 - 9) / 2 = -10 / 2 = -5 ∉ D
x2 = (-1 +9) / 2 = 8 / 2 = 4 ∈ D
odp. x = 4
a)
x≠5
(x+1)/2=8/(x-5) /*2
x+1=16/(x-5) /*(x-5)
(x+1)(x-5)=16
x^2-5x+x-5=16 /-16
x^2-4x-21=0
Δ=16-4*(-21)*1
Δ=100
√100=10
x1=4-10/2=-3
x2=4+10/2=7
b)
x≠-5
(2x+10)/(x+5)=x-2 /*(x+5)
2x+10=(x-2)(x+5)
2x+10=x^2+5x-2x-10
2x+10=x^2+3x-10 /-10
2x=x^2+3x-20 /-2x
x^2+x-20=0
Δ=1-4^(-20)*1
Δ=1+80
Δ=81
√81=9
x1=-1-9/2=-5 minus pięć nie może być, ponieważ mamy założenie więc:
x2=-1+9/2=4
x=4 ---- porawna odpowiedź.