" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
= [x² + (x - 2)(x + 2)]/x(x +2) = [x² + (x² - 4)]/(x² + 2x) =
= (2x² - 4)/(x² + 2x)
x-2/x + x/x+2 = [(x-2)(x+2) + x*x/x(x+2)=[x²-4+x²]/x(x+2)=
[2x²-4]/x(x+2)
= (x - 2) : x + x : ( x +2)=
sprowadzam do wspólnego mianownika tj. [ x*( x+2)]
=[ (x - 2) *(x +2) + x *x] : [x*( x+2)] =
= [ x^2 - 4 +x ^2 ] : x*( x+2)] =
redukuje
x^2 - ( ozn. x do potegi drugiej)
= (2x^2- 4) / x*(x + 2)
= [2(x^2 -2)]: [x*(x+2)]
Gdyby był zapis że tylko 2:x to rozwiazanie zadania byłoby inne
x - (2)/x + x / (x + 2)=
wspólny mianownik x*(x + 2)
=[ x^2*(x + 2) - 2(x + 2) + x*x ] : [ x*( x+2)]
= [x^3 + 2x^2 -2x -4 + x^2] : [ x*( x+2)]
= [ x^3 + 3x^2 -2x - 4 ] : [x*( x+2)]
= [ (x^2 + 2x - 4)*(x+1) ] : [x*( x+2)]