Wykonaj działanie:
(x² + ¹/x) / (x + ¹/x - 1) : (x² - ¹/x) / (x + ¹/x + 1) =
Załączam graficzną wersję.
Z:
x ∈ R \ { 0, 1}
= {[(x³ + 1)/x)] / [(x² - x + 1)/x]} : {[(x³ - 1)/x] / [(x² + x + 1)/x]} =
= [(x³ + 1)/(x² - x + 1)] : [(x³ - 1)/(x² + x + 1)] =
= [(x + 1)*(x² - x + 1)/(x² - x + 1)] : [(x - 1)*(x² + x + 1)/(x² + x + 1)] =
= (x + 1)/(x - 1)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
(x² + ¹/x) / (x + ¹/x - 1) : (x² - ¹/x) / (x + ¹/x + 1) =
Z:
x ∈ R \ { 0, 1}
(x² + ¹/x) / (x + ¹/x - 1) : (x² - ¹/x) / (x + ¹/x + 1) =
= {[(x³ + 1)/x)] / [(x² - x + 1)/x]} : {[(x³ - 1)/x] / [(x² + x + 1)/x]} =
= [(x³ + 1)/(x² - x + 1)] : [(x³ - 1)/(x² + x + 1)] =
= [(x + 1)*(x² - x + 1)/(x² - x + 1)] : [(x - 1)*(x² + x + 1)/(x² + x + 1)] =
= (x + 1)/(x - 1)