WZORY SKRÓCONEGO MNOŻENIA
1. Zapisz sumę w postaci iloczynu.
a) x(3c + d) + d + 3c =
b) -x - y - a(x + y) =
c) a - b - (b - a) · 4 =
d) m²n² - m² - n² + 1 =
e) x² - y² + 4 (x + y) =
f) -(ax - ay) + x² - y² =
g) x²y² - x² - y² + 1 =
h) x² - 4x + 4 - (8 - 2x²) =
2. Usuń niewymierność z mianownika.
a)
b)
c)
d)
Daję najlepszą odpowiedź. Z góry dziękuję. :D
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
1. Zapisz sumę w postaci iloczynu.
a) x(3c + d) + d + 3c = (3c+d)(x+1)
b) -x - y - a(x + y) = -(x+y)-a(x+y)=(x+y)(-1-a)
c) a - b - (b - a) · 4 = -(b-a)-4(b-a)=(b-a)(-1-4)= -5(b-a)
d) m²n² - m² - n² + 1 =![-m^{2}(1-n^{2})+1-n^{2}=(1-n^{2})(1-m^{2}) -m^{2}(1-n^{2})+1-n^{2}=(1-n^{2})(1-m^{2})](https://tex.z-dn.net/?f=-m%5E%7B2%7D%281-n%5E%7B2%7D%29%2B1-n%5E%7B2%7D%3D%281-n%5E%7B2%7D%29%281-m%5E%7B2%7D%29)
e) x² - y² + 4 (x + y) = (x-y)(x+y)+4(x+y)=(x+y)(4x-4y)
f) -(ax - ay) + x² - y² = -a(x-y)+(x+y)(x-y)=(x-y)(-ax-ay)
g) x²y² - x² - y² + 1 = -x²(- y² + 1)- y² + 1=(- y² + 1)(-x²+1)
h) x² - 4x + 4 - (8 - 2x²) = x²-4x+4-8+2x²=3x²-4x-4=3x²-6x+2x-4=3x(x-2)+2(x-2)=(x-2)(3x+2)
2. Usuń niewymierność z mianownika.
a) *![\frac{5-\sqrt{5}}{5-\sqrt{5}}= \frac{20(5-\sqrt{5})}{15}=\frac{20-4\sqrt{5}}{3} \frac{5-\sqrt{5}}{5-\sqrt{5}}= \frac{20(5-\sqrt{5})}{15}=\frac{20-4\sqrt{5}}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B5-%5Csqrt%7B5%7D%7D%7B5-%5Csqrt%7B5%7D%7D%3D+%5Cfrac%7B20%285-%5Csqrt%7B5%7D%29%7D%7B15%7D%3D%5Cfrac%7B20-4%5Csqrt%7B5%7D%7D%7B3%7D+)
b) *![\frac{2+\sqrt{5}}{2+\sqrt{5}}= \frac{6+3\sqrt{5}}{-1}=-6-3\sqrt{5} \frac{2+\sqrt{5}}{2+\sqrt{5}}= \frac{6+3\sqrt{5}}{-1}=-6-3\sqrt{5}](https://tex.z-dn.net/?f=%5Cfrac%7B2%2B%5Csqrt%7B5%7D%7D%7B2%2B%5Csqrt%7B5%7D%7D%3D+%5Cfrac%7B6%2B3%5Csqrt%7B5%7D%7D%7B-1%7D%3D-6-3%5Csqrt%7B5%7D)
c) *![\frac{2\sqrt{2}-3}{2\sqrt{2}-3}= \frac{2\sqrt{2}-3}{-1}= -2\sqrt{2}+3 \frac{2\sqrt{2}-3}{2\sqrt{2}-3}= \frac{2\sqrt{2}-3}{-1}= -2\sqrt{2}+3](https://tex.z-dn.net/?f=%5Cfrac%7B2%5Csqrt%7B2%7D-3%7D%7B2%5Csqrt%7B2%7D-3%7D%3D+%5Cfrac%7B2%5Csqrt%7B2%7D-3%7D%7B-1%7D%3D+-2%5Csqrt%7B2%7D%2B3)
d) *![\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\frac{4(\sqrt{7}+\sqrt{5})}{2}=2\sqrt{7}+2\sqrt{5} \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\frac{4(\sqrt{7}+\sqrt{5})}{2}=2\sqrt{7}+2\sqrt{5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B7%7D%2B%5Csqrt%7B5%7D%7D%7B%5Csqrt%7B7%7D%2B%5Csqrt%7B5%7D%7D%3D%5Cfrac%7B4%28%5Csqrt%7B7%7D%2B%5Csqrt%7B5%7D%29%7D%7B2%7D%3D2%5Csqrt%7B7%7D%2B2%5Csqrt%7B5%7D)