a₂ = a₁ + r
98 = 100 + r
r = - 2
an = a₁ + (n-1)r
an = 100 + (n-1)(-2) = 100 - 2n + 2 = 102 - 2n
an = 102 - 2n Wzór tego ciągu arytmetycznego
2 = 102 - 2n
100 - 2n = 0
2 n = 100
n = 50
OdP : 50 wyraz tego ciągu jest równy 2
a1 = 100
a2 = 98
więc
r = a2 - a1 = 98 - 100 = - 2
an = a1 + (n -1)*r
Po podstawieniu za a1 i r mamy
an = 100 + ( n -1)*(-2) = 100 - 2 n + 2 = 102 - 2 n
Odp. an = 102 - 2 n
======================
an = 2 <=> 102 - 2 n = 2
102 - 2 = 2n
2 n = 100 / : 2
Odp. a50 = 2
=================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a₂ = a₁ + r
98 = 100 + r
r = - 2
an = a₁ + (n-1)r
an = 100 + (n-1)(-2) = 100 - 2n + 2 = 102 - 2n
an = 102 - 2n Wzór tego ciągu arytmetycznego
2 = 102 - 2n
100 - 2n = 0
2 n = 100
n = 50
OdP : 50 wyraz tego ciągu jest równy 2
a1 = 100
a2 = 98
więc
r = a2 - a1 = 98 - 100 = - 2
an = a1 + (n -1)*r
Po podstawieniu za a1 i r mamy
an = 100 + ( n -1)*(-2) = 100 - 2 n + 2 = 102 - 2 n
Odp. an = 102 - 2 n
======================
an = 2 <=> 102 - 2 n = 2
102 - 2 = 2n
2 n = 100 / : 2
n = 50
Odp. a50 = 2
=================