Wyznacz liczbę n wyrazów ciągu geometrycznego, wiedząc, że:
a)
q=2
b)
q=-3
c)
q=
Proszę o dokładne podanie co z czego wynika;))z góry dzięki;))
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a )
a1 = 9
q = 2
an = 1152
Mamy
an = a1*q^(n-1)
1152 = 9* 2^(n-1) / : 9
128 = 2^(n-1)
n-1 = 7 , bo 2^7 = 128
zatem n = 8
============
b)
a1 = 25
q = - 3
an = 2025
Mamy
an = a1*q^(n-1)
2025 = 25*(-3)^(n-1) / : 25
81 = (-3)^(n-1)
n-1 = 4, bo (-3)^4 = 81
zatem n = 5
==============
c)
a1 = 54
q = 1/3
an = 2/243
Mamy
an = a1*q^(n-1)
2/243 = 54*(1/3)^(n-1) / : 54
2/(243*54) = (1/3)^(n -1)
1/(243*27) = (1/3)^(n -1)
1/ (3^5 * 3^3) = (1/3)^(n-1)
1/ 3^8 = (1/3)^( n-1)
(1/3)^8 = (1/3)^(n -1)
n-1 = 8
n = 9
===========