w załączniku, proszę o rozwiązanie zadań 2, 3, 4 i 6, uwaga niektóre wyniki tam na dole podane mogą się nie zgadzać
z.3
a)
log2 *6) - log2 (3) = log2(6/3) = log2 (2) = 1 , bo 2^1 = 2
b)
log3 [1/p(3)] = log3 [ p(3) ^(-1)] = log3 [ 3^(-1/2)] =( -1/2)*log 3(3) =
= (-1/2)*1 = - 1/2
c)
log p(3) [ p3st]^(1/2) = logp(3) [ 3^(1/3)]^(1/2) =
= logp(3)[ 3^(1/2)]^(1/3) = (1/3) * log p(3)[ p(3)] = (1/3)*1 = 1/3
d)
3 ^[log3(5)] = 5
e)
log2(3) + [log3(2)]^(-1) = log2(3) + 1/[log3(2)] = log2(3) + log2(3) =
= 2*log2(3)
f)
log9[p(x)] = -0,1 <=> 9^(-0,1) = x^(1/2) <=> [3^2]^(-0,1) = x ^(1/2) <+>
<=> 3^(-0,2) = x^(1/2)
logarytmujemy obie strony równości
log3[3^(-0,2)] = log3 [ x^(1/2)]
-0,2 * log3(3) =(1/2)* log3 (x)
-0,2 * 1 = (1/2)* log3 (x) / * 2
-0,4 = log3 (x)
log3 (x) = - 0,4
============
g)
log3(9) + log3 (1/27) + log 1/2 ( 1/16) =
= log3[9* (1/27)] + log 1/2 (1/2)^4 =
= log3 (9/27) + 4* log 1/2 (1/2) =
= log3 (1/3) + 4* 1 = log3 ( 3^(-1)) + 4 = -1*log3 (3) + 4 =
= -1*1 + 4 = -1 + 4 = 3
======================
h)
log2 (8) * log8 (2) = 3*[ 1/[log2(8)] = 3* (1/3) = 3/3 = 1
================================================
z.4
log3[log4 (x)] = 0 <=> log4(x) = 3^0 = 1 <=> x = 4^1 = 4 > 0
Odp. 4
======
log5[x^2 - 4] =1 Musi byc x^2 - 4 > 0
log5 [ x^2 - 4] = 1 <=> x^2 - 4 = 5^1 = 5 <=> x^2 = 9
x1 = -3; x2 = 3
=============
log[x -2] - log[x -4] = 1 - log [13 - x]
Musi być:
x -2 > 0 i x - 4> 0 i 13 - x > 0
czyli x > 2 i x > 4 i x < 13
zatem 4 < x < 13
Mamy
log [ (x-2)/(x-4)] = log 10 - log[13 - x]
log[(x-2)/(x-4)] = log [10/(13 - x)]
(x-2)/(x-4) = 10/(13 - x)
10*(x-4) = (x-2)*(13 - x)
10x - 40 = 13x - x^2 - 26 + 2x
x^2 -5x - 14 = 0
delta = 25 - 4*1*(-14) = 25 + 56 = 81
p(delty ) = 9
x = [5 - 9]/2 = -4/2 = -2 < 0 <---- odpada
x = [5 + 9]/2 = 14/2 = 7
Odp. 7
========
log p(x -5) + log p(2x -3) + 1 = log 30
x - 5 > 0 i 2x - 3 > 0
czyli [ x > 5 i x > 1,5 ] => x > 5
log p [(x-5)*(2x -3) ] = log 30 - log 10
log p[ 2x^2 -13x +15] = log[30/10] = log 3
zatem
p[ 2 x^2 - 13 x + 15] = 3
2x^2 - 13x + 15 = 9
2 x^2 - 13 x + 6 = 0
delta = 169 - 4*2*6 = 169 - 48 = 121
p (delty) = 11
x = [ 13 - 11]/4 =2/4 = 1/2 < 5 więc odpada
x = [ 13 + 11]/4 = 24/4 = 6 > 5
Odp. x = 6
===============
e )
log ( 0,5 + x) = log 0,5 - log x
0,5 + x > 0 i x > 0
[ x > -0,5 i x > 0 ] => x > 0
log [ 0,5 + x ] = log[ 0,5 / x ]
0,5 + x = 0,5 / x ; mnożymy przez x
0,5x + x^2 = 0,5
x^2 + 0,5x - 0,5 = 0
delta = 0,25 - 4*1*(-0,5) = 0,25 + 2 = 2,25
p (delty ) = 1,5
x = [ -0,5 - 1,5]/2 = -2/2 = - 1 < 0, więc odpada
x = [ -0,5 + 1,5]/2 = 1/2 = 0,5
Odp. x = 0,5
==================================
log [ 9 - 2^x ] = 3 - x
założenie: 9 - 2^x > 0 => 9 > 2^x => 2^x < 9
log [ 9 - 2^x ] = 3 -x <=> 10^(3 - x) = 9 - 2^x <=> (10^3)/(10^x) = 9 - 2^x
<=> x = 3
=========
spr. 10^3 / 10^3 = 1 oraz 9 - 2^3 = 9 - 8 = 1
----------------------------------------------------------------------------------------
log4 { 2 log3 [ 1 + log2 (1 + 3 log2 (x))]} = 1/2
zatem 2 log3 [ 1 + log2 ( 1 + 3 log2 (x))] = 4^(1/2) = p(4) = 2 / : 2
log3 [ 1 + log2(1 + 3 log2(x))] = 1
więc 1 + log2 ( 1 + 3 log2 (x)) = 3^1 = 3 / - 1
log2 ( 1 + 3 log2 (x) ) = 2
czyli 1 + 3 log2 (x) = 2^2 = 4 / -1
3 log2 (x) = 3 / : 3
log2 (x) = 1
x = 2 > 0
Odp. x = 2
================
z.2
(2/3)^x > p[p(1,5)] ; mamy a = 2/3 < 1
(2/3)^x > (3/2)^(1/4)
(2/3)^x > (2/3)^(-1/4)
x < -1 /4 , bo a = 2/3 < 1
Odp. x < - 1/4
5^x - 3^(x +1) > 2*[ 5 ^(x -1) - 3^x ]
5^x - 3*3^x > 2* 5^(x -1) - 2* 3^x
5^x - 2*(1/5)*5^x > 3*3^x - 2*3^x
5^x - (0,4)*5^x > 3^x
0,6 * 5^x > 3^x ; dzielimy przez 5^x
0,6 > (3^x)/( 5^x)
(3/5)^x < 0,6
( 3/5)^x < (3/5)^1 ; ponieważ a = 3/5 < 1 zatem
x > 1
3^(x+2) + 7^x < 4* 7^(x -1) + 34 * 3 ^(x -1)
3^2 * 3^x - 34 *(1/3)* 3^x < 4 *(1/7)* 7^x - 7^x
9* 3^x - (34/3)* 36x < (4/7)* 7^x - 7^x
( 9 - 11 1/3 ) *3^x < ( 4/7 - 1 ) * 7 ^x
( - 2 1/3 ) * 3^x < ( - 3/7)* 7^x
( - 7/3)* 3^x < ( -3/7) * 7^x / * ( -3/7)
3^x > (9/49)* 7 ^x / : 7^x
(3^x)/( 7^x) > 9/49
(3/7) ^ x > (3/7) ^2 ; ponieważ a = 3/7 < 1 , zatem
Odp. x < 2
==================
3^(1/x) + 3^[ (1/x) + 3] > 84
3^(1/x) + 3^3 * 3 ^(1/x) > 84
3^(1/x) + 27 * 3^(1/x) > 84
28 * 3^(1/x) > 84 / : 28
3^(1/x) > 3 ^1 ; ponieważ a = 3 więc
1/x > 1
0 < x < 1
(1/3)^(p(x+2)) > 3 ^(-x)
Założenie: x+2 >= 0 czyli x >= - 2
(1/3)^(p(x+2)) > (1/3)^x
Ponieważ a = 1/3 < 1 zatem
p(x +2) < x
Rozpatrujemy 2 przypadki:
1 ) -2 <= x < 0
wtedy p(x+2) > 0 , ale x <0
Po podniesieniu do kwadratu otrzymamy
x =2 > x^2
-x^2 + x +1 > 0
delta = 9
x1 = 2 oraz x2 = -1
Ramiona paraboli skierowane w dół
czyli [ -1 < x < 2, ale -2 <= x < 0 ] => x należy do ( -1; 0)
2)
dla x > 0
p(x +2) > 0 oraz x > 0
zatem po podniesieniu do kwadratu mamy
x +2 < x^2
-x^2 + x +2 < 0
x1 = 2 ; x2 = - 1 oraz ramiona paraboli skierowane w dół
czyli [ -1 < x < 2 oraz x > 0 ] => x należy do (0; 2)
Z 1) i 2) => x należy do ( -1; 0 ) u (0; 2)
Liczba 0 nie spełnia tej nierówności, bo
(1/3)^p(2) < 3^0 = 1,a nie >
Odp. X należy do ( -1; 0) u ( 0; 2)
===================================
2^(3 - 6x) > 1
2^(3 - 6x) > 2^0
a = 2 > 1 zatem
3 - 6x > 0
-6x > -3 / : (-6)
x < 1/2
=====================
x^2 * 5^x - 5^(2 +x) < 0
x^2 * 5^x - 5^2 * 5^x < 0
x^2 * 5^x - 25 * 5^x < 0
x^2 *5^x < 25*5^x ; ponieważ zawsze 5^x > 0 po podzieleniu przez 5^x
mamy
x^2 < 25
czyli -5 < x < 5
Odp. x należy do ( -5 ; 5 )
============================
4^(x-1) + 1/4 <= 0
( 4 ^(-1)) * 4^x + 1/4 <= 0
(1/4)* 4^x + 1/4 <= 0 / * 4
4^x + 1 <= 0 sprzecznośc, bo 4^x > 0 dla dowolnej liczby x
Odp. Nie ma rozwiązań
======================================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
z.3
a)
log2 *6) - log2 (3) = log2(6/3) = log2 (2) = 1 , bo 2^1 = 2
b)
log3 [1/p(3)] = log3 [ p(3) ^(-1)] = log3 [ 3^(-1/2)] =( -1/2)*log 3(3) =
= (-1/2)*1 = - 1/2
c)
log p(3) [ p3st]^(1/2) = logp(3) [ 3^(1/3)]^(1/2) =
= logp(3)[ 3^(1/2)]^(1/3) = (1/3) * log p(3)[ p(3)] = (1/3)*1 = 1/3
d)
3 ^[log3(5)] = 5
e)
log2(3) + [log3(2)]^(-1) = log2(3) + 1/[log3(2)] = log2(3) + log2(3) =
= 2*log2(3)
f)
log9[p(x)] = -0,1 <=> 9^(-0,1) = x^(1/2) <=> [3^2]^(-0,1) = x ^(1/2) <+>
<=> 3^(-0,2) = x^(1/2)
logarytmujemy obie strony równości
log3[3^(-0,2)] = log3 [ x^(1/2)]
-0,2 * log3(3) =(1/2)* log3 (x)
-0,2 * 1 = (1/2)* log3 (x) / * 2
-0,4 = log3 (x)
log3 (x) = - 0,4
============
g)
log3(9) + log3 (1/27) + log 1/2 ( 1/16) =
= log3[9* (1/27)] + log 1/2 (1/2)^4 =
= log3 (9/27) + 4* log 1/2 (1/2) =
= log3 (1/3) + 4* 1 = log3 ( 3^(-1)) + 4 = -1*log3 (3) + 4 =
= -1*1 + 4 = -1 + 4 = 3
======================
h)
log2 (8) * log8 (2) = 3*[ 1/[log2(8)] = 3* (1/3) = 3/3 = 1
================================================
z.4
a)
log3[log4 (x)] = 0 <=> log4(x) = 3^0 = 1 <=> x = 4^1 = 4 > 0
Odp. 4
======
b)
log5[x^2 - 4] =1 Musi byc x^2 - 4 > 0
log5 [ x^2 - 4] = 1 <=> x^2 - 4 = 5^1 = 5 <=> x^2 = 9
x1 = -3; x2 = 3
=============
c)
log[x -2] - log[x -4] = 1 - log [13 - x]
Musi być:
x -2 > 0 i x - 4> 0 i 13 - x > 0
czyli x > 2 i x > 4 i x < 13
zatem 4 < x < 13
Mamy
log [ (x-2)/(x-4)] = log 10 - log[13 - x]
log[(x-2)/(x-4)] = log [10/(13 - x)]
(x-2)/(x-4) = 10/(13 - x)
10*(x-4) = (x-2)*(13 - x)
10x - 40 = 13x - x^2 - 26 + 2x
x^2 -5x - 14 = 0
delta = 25 - 4*1*(-14) = 25 + 56 = 81
p(delty ) = 9
x = [5 - 9]/2 = -4/2 = -2 < 0 <---- odpada
x = [5 + 9]/2 = 14/2 = 7
Odp. 7
========
d)
log p(x -5) + log p(2x -3) + 1 = log 30
x - 5 > 0 i 2x - 3 > 0
czyli [ x > 5 i x > 1,5 ] => x > 5
log p [(x-5)*(2x -3) ] = log 30 - log 10
log p[ 2x^2 -13x +15] = log[30/10] = log 3
zatem
p[ 2 x^2 - 13 x + 15] = 3
2x^2 - 13x + 15 = 9
2 x^2 - 13 x + 6 = 0
delta = 169 - 4*2*6 = 169 - 48 = 121
p (delty) = 11
x = [ 13 - 11]/4 =2/4 = 1/2 < 5 więc odpada
x = [ 13 + 11]/4 = 24/4 = 6 > 5
Odp. x = 6
===============
e )
log ( 0,5 + x) = log 0,5 - log x
0,5 + x > 0 i x > 0
[ x > -0,5 i x > 0 ] => x > 0
log [ 0,5 + x ] = log[ 0,5 / x ]
0,5 + x = 0,5 / x ; mnożymy przez x
0,5x + x^2 = 0,5
x^2 + 0,5x - 0,5 = 0
delta = 0,25 - 4*1*(-0,5) = 0,25 + 2 = 2,25
p (delty ) = 1,5
x = [ -0,5 - 1,5]/2 = -2/2 = - 1 < 0, więc odpada
x = [ -0,5 + 1,5]/2 = 1/2 = 0,5
Odp. x = 0,5
==================================
f)
log [ 9 - 2^x ] = 3 - x
założenie: 9 - 2^x > 0 => 9 > 2^x => 2^x < 9
log [ 9 - 2^x ] = 3 -x <=> 10^(3 - x) = 9 - 2^x <=> (10^3)/(10^x) = 9 - 2^x
<=> x = 3
=========
spr. 10^3 / 10^3 = 1 oraz 9 - 2^3 = 9 - 8 = 1
----------------------------------------------------------------------------------------
g)
log4 { 2 log3 [ 1 + log2 (1 + 3 log2 (x))]} = 1/2
zatem 2 log3 [ 1 + log2 ( 1 + 3 log2 (x))] = 4^(1/2) = p(4) = 2 / : 2
log3 [ 1 + log2(1 + 3 log2(x))] = 1
więc 1 + log2 ( 1 + 3 log2 (x)) = 3^1 = 3 / - 1
log2 ( 1 + 3 log2 (x) ) = 2
czyli 1 + 3 log2 (x) = 2^2 = 4 / -1
3 log2 (x) = 3 / : 3
log2 (x) = 1
x = 2 > 0
Odp. x = 2
================
z.2
a)
(2/3)^x > p[p(1,5)] ; mamy a = 2/3 < 1
(2/3)^x > (3/2)^(1/4)
(2/3)^x > (2/3)^(-1/4)
x < -1 /4 , bo a = 2/3 < 1
Odp. x < - 1/4
================
b)
5^x - 3^(x +1) > 2*[ 5 ^(x -1) - 3^x ]
5^x - 3*3^x > 2* 5^(x -1) - 2* 3^x
5^x - 2*(1/5)*5^x > 3*3^x - 2*3^x
5^x - (0,4)*5^x > 3^x
0,6 * 5^x > 3^x ; dzielimy przez 5^x
0,6 > (3^x)/( 5^x)
(3/5)^x < 0,6
( 3/5)^x < (3/5)^1 ; ponieważ a = 3/5 < 1 zatem
x > 1
============
c)
3^(x+2) + 7^x < 4* 7^(x -1) + 34 * 3 ^(x -1)
3^2 * 3^x - 34 *(1/3)* 3^x < 4 *(1/7)* 7^x - 7^x
9* 3^x - (34/3)* 36x < (4/7)* 7^x - 7^x
( 9 - 11 1/3 ) *3^x < ( 4/7 - 1 ) * 7 ^x
( - 2 1/3 ) * 3^x < ( - 3/7)* 7^x
( - 7/3)* 3^x < ( -3/7) * 7^x / * ( -3/7)
3^x > (9/49)* 7 ^x / : 7^x
(3^x)/( 7^x) > 9/49
(3/7) ^ x > (3/7) ^2 ; ponieważ a = 3/7 < 1 , zatem
Odp. x < 2
==================
d)
3^(1/x) + 3^[ (1/x) + 3] > 84
3^(1/x) + 3^3 * 3 ^(1/x) > 84
3^(1/x) + 27 * 3^(1/x) > 84
28 * 3^(1/x) > 84 / : 28
3^(1/x) > 3 ^1 ; ponieważ a = 3 więc
1/x > 1
0 < x < 1
=========
e)
(1/3)^(p(x+2)) > 3 ^(-x)
Założenie: x+2 >= 0 czyli x >= - 2
(1/3)^(p(x+2)) > (1/3)^x
Ponieważ a = 1/3 < 1 zatem
p(x +2) < x
Rozpatrujemy 2 przypadki:
1 ) -2 <= x < 0
wtedy p(x+2) > 0 , ale x <0
Po podniesieniu do kwadratu otrzymamy
x =2 > x^2
-x^2 + x +1 > 0
delta = 9
x1 = 2 oraz x2 = -1
Ramiona paraboli skierowane w dół
czyli [ -1 < x < 2, ale -2 <= x < 0 ] => x należy do ( -1; 0)
2)
dla x > 0
p(x +2) > 0 oraz x > 0
zatem po podniesieniu do kwadratu mamy
x +2 < x^2
-x^2 + x +2 < 0
delta = 9
x1 = 2 ; x2 = - 1 oraz ramiona paraboli skierowane w dół
czyli [ -1 < x < 2 oraz x > 0 ] => x należy do (0; 2)
Z 1) i 2) => x należy do ( -1; 0 ) u (0; 2)
Liczba 0 nie spełnia tej nierówności, bo
(1/3)^p(2) < 3^0 = 1,a nie >
Odp. X należy do ( -1; 0) u ( 0; 2)
===================================
f)
2^(3 - 6x) > 1
2^(3 - 6x) > 2^0
a = 2 > 1 zatem
3 - 6x > 0
-6x > -3 / : (-6)
x < 1/2
=====================
g)
x^2 * 5^x - 5^(2 +x) < 0
x^2 * 5^x - 5^2 * 5^x < 0
x^2 * 5^x - 25 * 5^x < 0
x^2 *5^x < 25*5^x ; ponieważ zawsze 5^x > 0 po podzieleniu przez 5^x
mamy
x^2 < 25
czyli -5 < x < 5
Odp. x należy do ( -5 ; 5 )
============================
h)
4^(x-1) + 1/4 <= 0
( 4 ^(-1)) * 4^x + 1/4 <= 0
(1/4)* 4^x + 1/4 <= 0 / * 4
4^x + 1 <= 0 sprzecznośc, bo 4^x > 0 dla dowolnej liczby x
Odp. Nie ma rozwiązań
======================================