Oblicz wartość wyraqżenia (w mianowniku) cosα+sinα / (w liczniku) sinα-cosα , ejeśli tgα=√2
tgα=√2
√2=sinα/cosα
sin²α+cos²α=1
sinα=cosα√2
(cosα√2)²+cos²α=1
-----------------------------
2cos²α+cos²α=1
3cos²α=1
cos²α=¹/₃
{cosα=¹/₃√3 lub {cosα=-¹/₃√3
{sinα=¹/₃√6 {sinα=-¹/₃√6
(sinα-cosα)/(sinα+cosα)=(¹/₃√6-¹/₃√3)/(¹/₃√6+¹/₃√3)=
=(√6-√3)/(√6+√3)=(√6-√3)²/3=(6+3-6√2)/3=3-2√2
lub
(sinα-cosα)/(sinα+cosα)=(-¹/₃√6+¹/₃√3)/(-¹/₃√6-¹/₃√3)=
Odp.: Wartość tego wyrażenia to 3-2√2.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
tgα=√2
√2=sinα/cosα
sin²α+cos²α=1
sinα=cosα√2
(cosα√2)²+cos²α=1
-----------------------------
2cos²α+cos²α=1
3cos²α=1
cos²α=¹/₃
{cosα=¹/₃√3 lub {cosα=-¹/₃√3
{sinα=¹/₃√6 {sinα=-¹/₃√6
(sinα-cosα)/(sinα+cosα)=(¹/₃√6-¹/₃√3)/(¹/₃√6+¹/₃√3)=
=(√6-√3)/(√6+√3)=(√6-√3)²/3=(6+3-6√2)/3=3-2√2
lub
(sinα-cosα)/(sinα+cosα)=(-¹/₃√6+¹/₃√3)/(-¹/₃√6-¹/₃√3)=
=(√6-√3)/(√6+√3)=(√6-√3)²/3=(6+3-6√2)/3=3-2√2
Odp.: Wartość tego wyrażenia to 3-2√2.