" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
1*2*3*4*5*6*7*...*n ≥ 3*3*3*3*3*3*3*...*3
Z twierdzenia o 3 ciagach:
a)
2^n/3^n ≤ 2^n/n! ≤ 2^n/(3/n)^n
[(2/3)^n → 0 ∧ (6/n)^n→0) ⇒ 2^n/n! → 0
n→ ∞
b)
n! ≤n^{n-1} dla kazdego n≥3
dla n=3
3! ≤3²
6≤9
Zalozenie:
n! ≤n^(n-1)
Teza:
n!*(n+1) ≤(n+1)^n
Dowod:
n^(n-1)*(n+1) ≤(n+1)^n
1/n *n^n *(n+1) ≤ (n+1)^n /:n^n
(n+1)/n ≤ (n+1)^n /*n
n+1 ≤ n*(n+1)^n
2^n/n^n ≤ (2^n * n!)/n^n ≤ (2^n*n^{n-1})/(n^n)=2^n / n
[(2/3)^n → 0 ∧ (2/n)^n→0) ⇒ (2^n*n!)/ n^n →0
n→∞