Suma n początkowych wyrazów ciągu (an) jest równa Sn= n²+2n. Udowodnij,że ciąg (an) jest arytmetyczny i wyznacz go.
Proszę o zrozumiale rozwiązanie :)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Sn = n^2 + 2n
S1 =a1 =1^2 +2*1 = 1 + 2 = 3
a1 = 3
======
S2 = a1 + a2 --> a2 = S2 - a1 = [ 2^2 +2*2 ] - 3 = 8 - 3 = 5
a2 = 5
=====
S3 = a1 + a2 +a3 ---> a3 = S3 - a1 - a2
a3 = [ 3^2 +2*3 ] - 3 - 5 = 9 + 6 - 3 - 5 = 15 - 8 = 7
a3 = 7
=====
a3 -a2 = 7 - 5 = 2
oraz
a2 - a1 = 5 - 3 = 2
r = 2
Odp. a1 = 3 oraz r = 2
========================
II sposób.
S1 = a1 = 1^2 +2*1 = 1 + 2 = 3
Sn+1 = (n+1)^2 + 2*(n +1) = n^2 + 2n + 1 + 2n + 2 = n^2 + 4n + 3
Sn+1 - Sn = an+1
czyli
an+1 = [ n^2 + 4n + 3 ] - [ n^2 + 2n ] = 2n + 3
zatem
an = 2*(n-1) + 3 = 2n -2 + 3 = 2n + 1
oraz
an+1 - an = [ 2n + 3] - [2n + 1 ] = 2
r = 2
Odp. a1 = 3 oraz r = 2
=========================