Sprowadź do postaci iloczynowej następujące wielomiany:
a). y=-2x-3
b). y=9+6x+1
c). y=-2(x+3)+8
a)
y = x^2 - 2x - 3
delta = 4 -4*1*(-3) = 4 + 12 = 16
x1 = [2 -4]/2 = -2/2 = -1
x2 = [2 + 4]/2 = 6/2 = 3
Ponieważ a = 1
zatem
y = (x +1)*(x - 3)
==================
b)
y = 9x^2 + 6x + 1
y = (3x + 1)^2 = (3x +1)*(3x +1) = 3*(x + 1/3)*3*(x + 1/3)
y = 9*(x +1/3)*(x + 1/3)
========================
c)
y = -2(x +3)^2 + 8
y = -2(x^2 +6x + 9) + 8 = -2 x^2 - 12x - 18 + 8 = -2x^2 - 12x - 10
delta = 144 - 4*(-2)*(-10) = 144 - 80 = 64
x1 = [ 12 - 8]/(-4) = 4/(-4) = -1
x2 = [ 12 + 8]/(-4) = 20/(-4) = - 5
Ponieważ a = -2 zatem
y = -2*(x +1)*(x + 5)
======================
Korzystaliśmy z wzoru
a x^2 + bx + c = a(x -x1)*(x - x2)
===============================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
y = x^2 - 2x - 3
delta = 4 -4*1*(-3) = 4 + 12 = 16
x1 = [2 -4]/2 = -2/2 = -1
x2 = [2 + 4]/2 = 6/2 = 3
Ponieważ a = 1
zatem
y = (x +1)*(x - 3)
==================
b)
y = 9x^2 + 6x + 1
y = (3x + 1)^2 = (3x +1)*(3x +1) = 3*(x + 1/3)*3*(x + 1/3)
y = 9*(x +1/3)*(x + 1/3)
========================
c)
y = -2(x +3)^2 + 8
y = -2(x^2 +6x + 9) + 8 = -2 x^2 - 12x - 18 + 8 = -2x^2 - 12x - 10
delta = 144 - 4*(-2)*(-10) = 144 - 80 = 64
x1 = [ 12 - 8]/(-4) = 4/(-4) = -1
x2 = [ 12 + 8]/(-4) = 20/(-4) = - 5
Ponieważ a = -2 zatem
y = -2*(x +1)*(x + 5)
======================
Korzystaliśmy z wzoru
a x^2 + bx + c = a(x -x1)*(x - x2)
===============================