Rozwiąz nierówności: (zadanie w załaczniku)
a)
x-(x-3)(3+x) ≥ 10-(x-2)²
x-(x²-9) ≥ 10-(x²-4x+4)
x-x²+9 ≥ 10-x²+4x-4
x-4x ≥ 6-9
-3x ≥ -3 /:(-3)
x ≤ 1
x ∈ (-∞; 1>
b)
3(x-1)+2(2-x) ≤ 2x-5
3x-3+4-2x ≤ 2x-5
x-2x ≤ -5-1
-x ≤ -6 /:(-1)
x ≥ 6
x ∈ <6; +∞)
c)
(3-x)/6 - (2+x)/3 ≥ 1 I*6
3-x-2(2+x) ≥ 6
3-x-4-2x ≥ 6
-3x ≥ 6+1
-3x ≥ 7 /:(-3)
x ≤ -7/3
x ∈ (-∞; -7/3>
d)
-x-(x-8)/5 < 2(x+4) I*5
-5x-(x-8) < 10(x+4)
-5x-x+8 < 10x+40
-6x-10x < 40-8
-16x < 32 /:(-16)
x > -2
x ∈ (-2; +∞)
a) x-(x-3)(3+x) ≥ 10-(x-2)²
x-(x-3)(x+3) ≥ 10-(x²-4x+4)
x-(x² - 9) ≥ 10-x² +4x - 4
x-x²+9≥10-x²+4x-4
x-x²+x²-4x≥10-4-9
-3x≥-3
x≤1
x∈ (-∞;1>
b) 3(x-1)+2(2-x)≤2x-5
3x - 3 + 4 - 2x ≤ 2x - 5
3x - 2x -2x ≤ -5 +3 - 4
-x ≤ -6
x∈ <6;+∞)
3-x-2(2+x)≥1
3-x-4-2x≥1
-3x≥1-3+4
-3x≥2
x≤ - ⅔
x∈ (-∞;-⅔>
-5x-x+8< 10x +40
-6x-10x<40-8
-16x<32
x>-2
x∈ (-2;+∞)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
x-(x-3)(3+x) ≥ 10-(x-2)²
x-(x²-9) ≥ 10-(x²-4x+4)
x-x²+9 ≥ 10-x²+4x-4
x-4x ≥ 6-9
-3x ≥ -3 /:(-3)
x ≤ 1
x ∈ (-∞; 1>
b)
3(x-1)+2(2-x) ≤ 2x-5
3x-3+4-2x ≤ 2x-5
x-2x ≤ -5-1
-x ≤ -6 /:(-1)
x ≥ 6
x ∈ <6; +∞)
c)
(3-x)/6 - (2+x)/3 ≥ 1 I*6
3-x-2(2+x) ≥ 6
3-x-4-2x ≥ 6
-3x ≥ 6+1
-3x ≥ 7 /:(-3)
x ≤ -7/3
x ∈ (-∞; -7/3>
d)
-x-(x-8)/5 < 2(x+4) I*5
-5x-(x-8) < 10(x+4)
-5x-x+8 < 10x+40
-6x-10x < 40-8
-16x < 32 /:(-16)
x > -2
x ∈ (-2; +∞)
a) x-(x-3)(3+x) ≥ 10-(x-2)²
x-(x-3)(x+3) ≥ 10-(x²-4x+4)
x-(x² - 9) ≥ 10-x² +4x - 4
x-x²+9≥10-x²+4x-4
x-x²+x²-4x≥10-4-9
-3x≥-3
x≤1
x∈ (-∞;1>
b) 3(x-1)+2(2-x)≤2x-5
3x - 3 + 4 - 2x ≤ 2x - 5
3x - 2x -2x ≤ -5 +3 - 4
-x ≤ -6
x ≥ 6
x∈ <6;+∞)
c)
3-x-2(2+x)≥1
3-x-4-2x≥1
-3x≥1-3+4
-3x≥2
x≤ - ⅔
x∈ (-∞;-⅔>
d)
-5x-x+8< 10x +40
-6x-10x<40-8
-16x<32
x>-2
x∈ (-2;+∞)