Rozwiaz rownanie A) (2x-9)(x^2+2x)(x^2+4)=0
A)
(2x-9)(x²+2x)(x²+4) = 0
(2x-9)·x·(x+2)(x²+4) = 0
x(2x-9)(x+2)(x²+4) = 0
x = 0
lub
2x-9 = 0 /:2
x = 4,5
x+2 = 0
x = -2
x²+4 > 0 (dla każdego x)
Odp. x = -2 v x = 0 v x = 4,5
( 2x - 9)*( x^2 + 2 x )*( x^2 + 4 ) = 0
x*( x + 2)*( 2x - 9)*( x^2 + 4) = 0
x = 0 v x + 2 = 0 v 2x - 9 = 0; x^2 + 4 > 0
x = 0 v x = - 2 v 2x = 9
Odp. x = - 2 v x = 0 v x = 4,5
===============================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
A)
(2x-9)(x²+2x)(x²+4) = 0
(2x-9)·x·(x+2)(x²+4) = 0
x(2x-9)(x+2)(x²+4) = 0
x = 0
lub
2x-9 = 0 /:2
x = 4,5
lub
x+2 = 0
x = -2
x²+4 > 0 (dla każdego x)
Odp. x = -2 v x = 0 v x = 4,5
( 2x - 9)*( x^2 + 2 x )*( x^2 + 4 ) = 0
x*( x + 2)*( 2x - 9)*( x^2 + 4) = 0
x = 0 v x + 2 = 0 v 2x - 9 = 0; x^2 + 4 > 0
x = 0 v x = - 2 v 2x = 9
Odp. x = - 2 v x = 0 v x = 4,5
===============================