rozwiaz rownania
4x2-20x+9=0
(2x-1)*(x+2)=3
4x2+5x=1<0
5(2x-1)(x+4)<0
x3-4x2+3x=0
x3-2x2-x+2=0
x3+2x2-2x-4=0
4x²-20x+9=0
Δ=20²-4*4*9 =400-144 =256
√Δ = 16
x₁=(20-16)/(2*4)= 4/8 = 1/2
x²=(20+16)/(2*4)= 36/8 = 4 i 1/2
---------------------------------------------
2x²+4x-x-2-3=0
2x²+3x-5=0
Δ=3²-4*2*(-5) = 9+40=49
√Δ = 7
x₁=(-3-7)/(2*2)= -10/4 = -2 i 1/2
x²=(-3+7)/(2*2)= -4/4 = -1
--------------------------
4x²+5x+1<0 *
Δ=5²-4*4*1
Δ=25-16
Δ=9
√Δ = 3
x₁=(-5-3)/(2*4)= -8/8 = -1
x²=(-5+3)/(2*4)= -2/8 = -1/4
a>0 zatem rysujemy parabole ramionami skierowanymi do góry... zatem wartości mniejsze od zera będą w przedziale (-1/4; -1)
-----------------------------------------
5*[2x²+8x-x-4]<0
10x²+35x-20<0 /:5
2x²+7x-4 <0
Δ=7²-4*2*(-4) = 49+32=81
√Δ = 9
x₁=(-7-9)/(2*2)= -16/4 = -4
x²=(-7+9)/(2*2)= 2/4 = 1/2
a>0 ramiona do góry x należy od (-4;1/2)
----------------------------
x3-4x²+3x=0
x^3-4x²+3x=0
x(x²-4x+3)=0
wyciągam równanie kwadratowe i licze miejsca zerowe
Δ=4²-4*3 = 16-12=4
√Δ = 2
x₁=(4-2)/2= 2/2 = 1
x²=(4+2)/2= 6/2 = 3
Zatem:
x(x-1)(x-3)=0
x=0
x=1
x=3
---------------------------
x3-2x²-x+2=0
x^3-x-2x²+2=0
x(x²-1) -2 (x²-1)=0
(x²-1)(x-2)=0
x²=1 / √
|x|=1
x=1 lub x=-1
oraz
x=2
-------------------------
x3+2x²-2x-4=0
x²(x+2)-2(x+2)=0
(x²-2)(x+2)=0
x=-2
x²-2=0
x²=2 /√
|x|=√2
x=√2 lub x=-√2
*Zakładam, że zamiast "=" miało być "+"
1 . 4x²-20x+9=0
√Δ = √16 = 4
x₁=(20- 4)/(2*4)= 16/8 = 2
x²=(20+ 4)/(2*4)= 24/8 = 3
2 . (2x-1)*(x+2)=3
3. 4x²+5x+1<0 *
4. 5(2x-1)(x+4)<0
√Δ =√ 9 = 3
x₁=(-7-3)/(2*2)= -10/4 = - 2 i 1/4
x²=(-7+3)/(2*2)= 4/4 = 1
5 . x3-4x²+3x=0
6 . x3-2x²-x+2=0
7 . x3+2x²-2x-4=0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
4x²-20x+9=0
Δ=20²-4*4*9 =400-144 =256
√Δ = 16
x₁=(20-16)/(2*4)= 4/8 = 1/2
x²=(20+16)/(2*4)= 36/8 = 4 i 1/2
---------------------------------------------
(2x-1)*(x+2)=3
2x²+4x-x-2-3=0
2x²+3x-5=0
Δ=3²-4*2*(-5) = 9+40=49
√Δ = 7
x₁=(-3-7)/(2*2)= -10/4 = -2 i 1/2
x²=(-3+7)/(2*2)= -4/4 = -1
--------------------------
4x²+5x+1<0 *
Δ=5²-4*4*1
Δ=25-16
Δ=9
√Δ = 3
x₁=(-5-3)/(2*4)= -8/8 = -1
x²=(-5+3)/(2*4)= -2/8 = -1/4
a>0 zatem rysujemy parabole ramionami skierowanymi do góry... zatem wartości mniejsze od zera będą w przedziale (-1/4; -1)
-----------------------------------------
5(2x-1)(x+4)<0
5*[2x²+8x-x-4]<0
10x²+35x-20<0 /:5
2x²+7x-4 <0
Δ=7²-4*2*(-4) = 49+32=81
√Δ = 9
x₁=(-7-9)/(2*2)= -16/4 = -4
x²=(-7+9)/(2*2)= 2/4 = 1/2
a>0 ramiona do góry x należy od (-4;1/2)
----------------------------
x3-4x²+3x=0
x^3-4x²+3x=0
x(x²-4x+3)=0
wyciągam równanie kwadratowe i licze miejsca zerowe
Δ=4²-4*3 = 16-12=4
√Δ = 2
x₁=(4-2)/2= 2/2 = 1
x²=(4+2)/2= 6/2 = 3
Zatem:
x(x-1)(x-3)=0
x=0
x=1
x=3
---------------------------
x3-2x²-x+2=0
x^3-x-2x²+2=0
x(x²-1) -2 (x²-1)=0
(x²-1)(x-2)=0
x²=1 / √
|x|=1
x=1 lub x=-1
oraz
x=2
-------------------------
x3+2x²-2x-4=0
x²(x+2)-2(x+2)=0
(x²-2)(x+2)=0
x=-2
oraz
x²-2=0
x²=2 /√
|x|=√2
x=√2 lub x=-√2
*Zakładam, że zamiast "=" miało być "+"
1 . 4x²-20x+9=0
Δ=20²-4*4*9 =400-144 =256
√Δ = √16 = 4
x₁=(20- 4)/(2*4)= 16/8 = 2
x²=(20+ 4)/(2*4)= 24/8 = 3
2 . (2x-1)*(x+2)=3
2x²+4x-x-2-3=0
2x²+3x-5=0
Δ=3²-4*2*(-5) = 9+40=49
√Δ = 7
x₁=(-3-7)/(2*2)= -10/4 = -2 i 1/2
x²=(-3+7)/(2*2)= -4/4 = -1
3. 4x²+5x+1<0 *
Δ=5²-4*4*1
Δ=25-16
Δ=9
√Δ = 3
x₁=(-5-3)/(2*4)= -8/8 = -1
x²=(-5+3)/(2*4)= -2/8 = -1/4
4. 5(2x-1)(x+4)<0
5*[2x²+8x-x-4]<0
10x²+35x-20<0 /:5
2x²+7x-4 <0
Δ=7²-4*2*(-4) = 49+32=81
√Δ =√ 9 = 3
x₁=(-7-3)/(2*2)= -10/4 = - 2 i 1/4
x²=(-7+3)/(2*2)= 4/4 = 1
5 . x3-4x²+3x=0
x^3-4x²+3x=0
x(x²-4x+3)=0
Δ=4²-4*3 = 16-12=4
√Δ = 2
x₁=(4-2)/2= 2/2 = 1
x²=(4+2)/2= 6/2 = 3
x(x-1)(x-3)=0
x=0
x=1
x=3
6 . x3-2x²-x+2=0
x^3-x-2x²+2=0
x(x²-1) -2 (x²-1)=0
(x²-1)(x-2)=0
x²=1 / √
|x|=1
x=1 lub x=-1
oraz
x=2
7 . x3+2x²-2x-4=0
x²(x+2)-2(x+2)=0
(x²-2)(x+2)=0
x=-2
x²-2=0
x²=2 /√
|x|=√2
x=√2 lub x=-√2