rozwiąż równanie:
a) (x^{2} - 7x + 12)(x^{2} - x + 2)=0
b)(x^{2} - 4)(x^{2} - 9)(x^{3} + 1)=0
c) 2x(x^{2} + 2x + 1)(x^{2} - 6x + 9)
d) x(x^{2} - 4x + 3)(3x - 4) = 0
e) (x + 3)^{2}(x - 1)^{3}(x+4)^{2}=0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a) (x²-7x+12)(x²-x+2)=0
x²-7x+12=0 ∨ x²-x+2=0
Δ=49-48=1 Δ=1-8=-7
x₁=(7-1)/2=3 x₃∈Ф
x₂=(7+1)/2=4
Odp: x∈{3;4}
b) (x²-4)(x²-9)(x³+1)=0
x²-4=0 ∨ x²-9=0 ∨ x³+1=0
x²=4 ∨ x²=9 ∨ x³=-1
|x|=2 ∨ |x|=3 ∨ x=-1
x₁=2 ∨ x₂=-2 ∨ x₃=3 ∨ x₄=-3 ∨ x₅=-1
Odp: x∈{-3;-2;-1;2;3}
c) 2x(x²+2x+1)(x²-6x+9)=0
2x=0 ∨ x²+2x+1=0 ∨ x²-6x+9=0
x₁=0 ∨ Δ=4-4=0 Δ=36-26=0
. x₂=-1 ∨ x₃=3
Odp: x∈{-1;0;3}
d) x(x²-4x+3)(3x-4)=0
x₁=0 ∨ x²-4x+3=0 ∨ 3x-4=0
. Δ=16-12=4 3x=4
. x₂=(4-2)/2=1 x₄=¾
. x₃=(4+2)/2=3
Odp: x∈{0;¾;1;3}
e) (x+3)²(x-1)³(x+4)²=0
(x+3)²=0 ∨ (x-1)³=0 ∨ (x+4)²=0
|x+3|=0 ∨ |x-1|=0 ∨ |x+4|=0
x₁=-3 ∨ x₂=1 ∨ x₃=-4
Odp: x∈{-4;-3;1}