Rozwiąż równanie: x^4 -8x = 8 - x^3
x^4 - 8 x = 8 - x^3
x^4 + x^3 - 8 x - 8 = 0
x^3 *( x + 1) - 8*( x + 1) = 0
( x + 1)*( x^3 - 8) = 0
( x + 1)*( x^3 - 2^3) = 0
( x + 1)*( x - 2)*( x^2 + 2 x + 4) = 0
x + 1 = 0 lub x - 2 = 0 lub x^2 + 2 x + 4 = 0
x = - 1 lub x = 2
delta = 2^2 - 4*1*4 = 4 - 16 = - 12 < 0
Odp. x = - 1 lub x = 2
=======================
Korzytamy z wzoru:
a^3 - b^3 = ( a - b)*( a^2 + a*b + b^2)
gdzie a = x oraz b = 2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
x^4 - 8 x = 8 - x^3
x^4 + x^3 - 8 x - 8 = 0
x^3 *( x + 1) - 8*( x + 1) = 0
( x + 1)*( x^3 - 8) = 0
( x + 1)*( x^3 - 2^3) = 0
( x + 1)*( x - 2)*( x^2 + 2 x + 4) = 0
x + 1 = 0 lub x - 2 = 0 lub x^2 + 2 x + 4 = 0
x = - 1 lub x = 2
delta = 2^2 - 4*1*4 = 4 - 16 = - 12 < 0
Odp. x = - 1 lub x = 2
=======================
Korzytamy z wzoru:
a^3 - b^3 = ( a - b)*( a^2 + a*b + b^2)
gdzie a = x oraz b = 2