Rozwiąż równanie : x³-3√2x²+√2x-6=0; 1-x³=x²-x; x³-5x-4=0 wskazówka zapisz -5x jako -x-4x; x³-3x+2=0; x⁴-7x²+6x=0 . Z góry dzieki
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
x³-3√2x²+√2x-6=0
x²(x-3√2)+√2(x-3√2)=0
(x-3√2)(x²+√2)=0
x-3√2=0 lubx²+√2=0
x=3√2
x³-5x-4=0
x³-x-4x-4=0
x(x²-1)-4(x-1)=0
(x(x-1)(x+1)-4(x-1)=0
(x-1)(x(x+1)-4)=0
x-1=0 lub x(x+1)-4=0
x=1 lub x²+x-4=0
delta = 17
√delta = √17
x1=(-1-√17)/2
x2=(-1+√17)/2
zatem x=1 lub x=(-1-√17)/2 lub x=(-1+√17)/2
x³-3x+2=0
x³-x-2x+2=0
x(x²-1)-2(x-1)=0
x(x-1)(x+1)-2(x-1)=0
(x-1)(x(x+1)-2)=0
x-1=0 lub x(x+1)-2 = 0
x=1 lub x²+x-2=0
x=1 lub delta = 9
√delta=3
x1=-1-3/2=-4/2=-2
x2=-1+3/2=2/2=1
zatem x=1 lub x=-2
x⁴-7x²+6x=0
x⁴-x²-6x²+6x=0
x²(x²-1)-6x(x-1)=0
x²(x-1)(x+1)-6x(x-1)=0
(x-1)(x²(x+1)-6x)=0
x-1=0 lub (x²(x+1)-6x)=0
x=1 lub x³-x²-6x=0
x(x²- x-6)=0
x=0 lub (x²- x-6=0
delta = 25
√delta = 5
x1=1-5/2=-6/2=-3
x2=-1+5/2=4/2=2
zatem x=0 lub x=1 lub x=2 lub x=-3
x³-3√2x²+√2x-6=0
x²(x-3√2)+√2(x-3√2)=0
(x-3√2)(x²+√2)=0
x-3√2=0
x=3√2
x²+√2=0
x²=-√2 <-- brak rozwiązań
------------------------------
1-x³=x²-x
-x³-x²+x+1=0
-x²(x+1)+1(x+1)=0
(-x²+1)(x+1)=0
-x²+1=0
-x²=-1
x²=1
x=-1 ∨ x=1
x+1=0
x=-1
-------------------------
x³-5x-4=0
x³-x-4x-4=0
x(x²-1)-4(x+1)=0
x(x+1)(x-1)-4(x+1)=0
(x+1)(x(x-1)-4)=0
(x+1)(x²-x-4)=0
x+1=0
x=-1
Δ=(-1)²-4*1*(-4)
Δ=1+16
Δ=17
√Δ=√17
x₁=(-(-1)-√17)/(2*1)
x₁=(1-√17)/2
x₂=(-(-1)+√17)/(2*1)
x₂=(1+√17)/2
-------------------
x³-3x+2=0
x³-x-2x+2=0
x(x²-1)-2(x-1)=0
x(x-1)(x+1)-2(x-1)=0
(x-1)(x(x+1)-2)=0
(x-1)(x²+x-2)=0
x-1=0
x=1
Δ=1²-4*1*(-2)
Δ=1+8
Δ=9
√Δ=3
x₁=(-1-3)/(2*1)
x₁=-4/2
x₁=-2
x₂=(-1+3)/(2*1)
x₂=2/2
x₂=1
-------------------------
x⁴-7x²+6x=0
x(x³-7x+6)=0
x(x³-x-6x+6)=0
x(x(x²-1)-6(x-1))=0
x(x(x-1)(x+1)-6(x-1))=0
x(x-1)(x(x+1)-6)=0
x(x-1)(x²+x-6)=0
x=0
x-1=0
x=1
Δ=1²-4*1*(-6)
Δ=1+24
Δ=25
√Δ=5
x₁=(-1-5)/(2*1)
x₁=6/2
x₁=-3
x₂=(-1+5)/(2*1)
x₂=4/2
x₂=2