rozwiąż równanie: sinx · cos2x = 0, x∈<-pi; pi>
sinx=0 v cos2x=0
x=-π v x=0 v x=π
cos2x=0
2x=π/2+2kπ v 2x=-π/2+2kπ /:2, k∈C
x=π/4+kπ v x=-π/4+kπ
Odp. x∈{-π, -3π/4, -π/4,0, π/4. 3π/4, π}
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
sinx=0 v cos2x=0
x=-π v x=0 v x=π
cos2x=0
2x=π/2+2kπ v 2x=-π/2+2kπ /:2, k∈C
x=π/4+kπ v x=-π/4+kπ
Odp. x∈{-π, -3π/4, -π/4,0, π/4. 3π/4, π}